
An Upload-Efficient Scheme for Transferring Knowledge From a Server-Side
Pre-trained Generator to Clients in Heterogeneous Federated Learning

Jianqing Zhang1*, Yang Liu2,3†, Yang Hua4, Jian Cao1,5†

1Shanghai Jiao Tong University 2Institute for AI Industry Research (AIR), Tsinghua University
3Shanghai Artificial Intelligence Laboratory 4Queen’s University Belfast

5Shanghai Key Laboratory of Trusted Data Circulation and Governance in Web3
tsingz@sjtu.edu.cn, liuy03@air.tsinghua.edu.cn, y.hua@qub.ac.uk, cao-jian@sjtu.edu.cn

We provide more details and results about our work in
the appendices. Here are the contents:
• Appendix A: The details and results of using the Stable

Diffusion as the pre-trained generator on the server.
• Appendix B: The applicability of the knowledge trans-

fer scheme of our FedKTL in the scenario with only one
server and one edge client.

• Appendix C: Additional experimental details, such as
download web links of pre-trained generators, hyperpa-
rameter settings, etc.

• Appendix D: The continued privacy-preserving discus-
sion besides the main body with experimental results.

• Appendix E: Empirical convergence analysis.
• Appendix F: The effects of using different hyperparame-

ter settings for our FedKTL.
• Appendix G: Additional ablation study regarding the Ar-

cFace loss.
• Appendix H: Data distribution visualizations for different

scenarios in our experiments.

A. Using the Stable Diffusion Model
A.1. Preliminaries

z ∈ Rh×w×c. Importantly, the encoder downsamples the
image by a factor f = H/h = W/w, and we investigate
different downsampling factors f = 2m, with m ∈ N.

In order to avoid arbitrarily high-variance latent spaces,
we experiment with two different kinds of regularizations.
The first variant, KL-reg., imposes a slight KL-penalty to-
wards a standard normal on the learned latent, similar to a
VAE [45, 67], whereas VQ-reg. uses a vector quantization
layer [93] within the decoder. This model can be interpreted
as a VQGAN [23] but with the quantization layer absorbed
by the decoder. Because our subsequent DM is designed
to work with the two-dimensional structure of our learned
latent space z = E(x), we can use relatively mild compres-
sion rates and achieve very good reconstructions. This is
in contrast to previous works [23, 64], which relied on an
arbitrary 1D ordering of the learned space z to model its
distribution autoregressively and thereby ignored much of
the inherent structure of z. Hence, our compression model
preserves details of x better (see Tab. 8). The full objective
and training details can be found in the supplement.

3.2. Latent Diffusion Models

Diffusion Models [79] are probabilistic models designed to
learn a data distribution p(x) by gradually denoising a nor-
mally distributed variable, which corresponds to learning
the reverse process of a fixed Markov Chain of length T .
For image synthesis, the most successful models [15,29,70]
rely on a reweighted variant of the variational lower bound
on p(x), which mirrors denoising score-matching [82].
These models can be interpreted as an equally weighted
sequence of denoising autoencoders ǫθ(xt, t); t = 1 . . . T ,
which are trained to predict a denoised variant of their input
xt, where xt is a noisy version of the input x. The corre-
sponding objective can be simplified to (Sec. A)

LDM = Ex,ǫ∼N (0,1),t

[
‖ǫ− ǫθ(xt, t)‖22

]
, (1)

with t uniformly sampled from {1, . . . , T}.
Generative Modeling of Latent Representations With
our trained perceptual compression models consisting of E
and D, we now have access to an efficient, low-dimensional
latent space in which high-frequency, imperceptible details
are abstracted away. Compared to the high-dimensional
pixel space, this space is more suitable for likelihood-based
generative models, as they can now (i) focus on the impor-
tant, semantic bits of the data and (ii) train in a lower di-
mensional, computationally much more efficient space.

Unlike previous work that relied on autoregressive,
attention-based transformer models in a highly compressed,
discrete latent space [23, 64, 99], we can take advantage of
image-specific inductive biases that our model offers. This
includes the ability to build the underlying UNet primar-
ily from 2D convolutional layers, and further focusing the

Semantic 
 Map

crossattention

Latent Space Conditioning 

Text

Diffusion Process

denoising step switch skip connection

Repres 
entations

Pixel Space

Images

Denoising U-Net

concat

Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3

objective on the perceptually most relevant bits using the
reweighted bound, which now reads

LLDM := EE(x),ǫ∼N (0,1),t

[
‖ǫ− ǫθ(zt, t)‖22

]
. (2)

The neural backbone ǫθ(◦, t) of our model is realized as a
time-conditional UNet [69]. Since the forward process is
fixed, zt can be efficiently obtained from E during training,
and samples from p(z) can be decoded to image space with
a single pass through D.

3.3. Conditioning Mechanisms
Similar to other types of generative models [55, 80],

diffusion models are in principle capable of modeling
conditional distributions of the form p(z|y). This can
be implemented with a conditional denoising autoencoder
ǫθ(zt, t, y) and paves the way to controlling the synthesis
process through inputs y such as text [66], semantic maps
[32, 59] or other image-to-image translation tasks [33].

In the context of image synthesis, however, combining
the generative power of DMs with other types of condition-
ings beyond class-labels [15] or blurred variants of the input
image [70] is so far an under-explored area of research.

We turn DMs into more flexible conditional image gener-
ators by augmenting their underlying UNet backbone with
the cross-attention mechanism [94], which is effective for
learning attention-based models of various input modali-
ties [34,35]. To pre-process y from various modalities (such
as language prompts) we introduce a domain specific en-
coder τθ that projects y to an intermediate representation
τθ(y) ∈ RM×dτ , which is then mapped to the intermediate
layers of the UNet via a cross-attention layer implementing
Attention(Q,K, V ) = softmax

(
QKT

√
d

)
· V , with

Q = W
(i)
Q · ϕi(zt), K = W

(i)
K · τθ(y), V = W

(i)
V · τθ(y).

Here, ϕi(zt) ∈ RN×di
ǫ denotes a (flattened) intermediate

representation of the UNet implementing ǫθ and W
(i)
V ∈

Rd×di
ǫ , W (i)

Q ∈ Rd×dτ & W
(i)
K ∈ Rd×dτ are learnable pro-

jection matrices [35, 94]. See Fig. 3 for a visual depiction.

10687

Figure 1. The main components in the Stable Diffusion [10].

Most publicly available pre-trained generators can map
from a latent vector (or a matrix, which can be flattened

*Work done during internship at AIR.
†Corresponding authors.

to a vector) to an image, making them compatible with our
FedKTL. In Stable Diffusion [10] (v1.5), the latent diffu-
sion model (LDM) combined with VAE’s decoder can map
a latent vector zT to an image x̃, which is similar with Style-
GANs [4–6, 11] during generation, as shown in Fig. 1. Typ-
ically, zT is randomly generated from a normal distribution.
Except for the above similarities, Stable Diffusion includes
a conditioning component, which, for instance, can convert
a text prompt to a conditional vector and influence the dif-
fusion process to generate images with semantics related to
the given prompt. As our FedKTL is agnostic to the se-
mantics of the images produced by the generator, one can
select any valid text prompt, such as “a cat,” and maintain
it unchanged throughout the entire FL process.

A.2. Experimental Results

Due to the change of the pre-trained generator, we re-tune
some hyperparameters. Specifically, we set ηs = 0.1,
λ = 0.01, and µ = 100 while maintaining the other hyper-
parameters consistent with those used for the StyleGAN-
XL [11]. As shown in Tab. 1, using Stable Diffusion is also
effective. While Stable Diffusion demonstrates excellent
image generation performance, it’s worth noting that the di-
mension of the latent vector is 16384, compared to 512 in
the StyleGAN-XL. Mapping low-dimensional client proto-
types (with a dimension of 10 for the classification task on
Cifar10) to such a high dimension space while preserving
their correlation is challenging. Perhaps a deeper feature
transformer is required. We also show the generated images
during the HtFL process in Fig. 2. With more iterations of
HtFL, the generated images become clearer and more infor-
mative.

Generator StyleGAN-XL Stable Diffusion

Accuracy 87.63 87.71

Table 1. The test accuracy (%) of our FedKTL with different pre-
trained generators on Cifar10 in the practical setting using HtFE8.

1



(a) Iteration 0th

(b) Iteration 20th

(c) Iteration 40th

(d) Iteration 60th

(e) Iteration 80th

Figure 2. The prototypical images generated by Stable Diffusion corresponding to all 10 classes of Cifar10 at different communication
iterations during the HtFL process.

B. The Scenario With a Single Edge Client

In the traditional FL scenarios [9, 19], clients mainly fetch
extra knowledge from the globally aggregated model pa-
rameters. From the view of an individual client, these
global model parameters contain fused knowledge from
other clients. In our FedKTL, except for the aggregated
knowledge from clients, the pre-trained generator consists
of common and valuable knowledge that can facilitate client
training, particularly in addressing the data scarcity problem
on edge devices. Therefore, the knowledge transfer scheme
(i.e., the Knowledge-Transfer Loop (KTL)) in our FedKTL
offers an additional feature beyond FL, expanding its appli-
cability to the scenarios with only one server and one edge
client (e.g., the cloud-edge scenarios) and broadening the
scope of its application.

We can employ the KTL without modifying FedKTL’s
workload, as the aggregation step has no effect with only
one client. We iteratively execute the knowledge transfer
process in each training epoch for this client until the train-
ing of the client model converges. Specifically, in each
training epoch, the client sends a request (i.e., client proto-
types) to the server, the server then sends a response (i.e.,

image-vector pairs) back to the client, and the response
further serves as an additional supervised task to promote
client training.

By default, we adopt the StyleGAN-XL as the pre-
trained generator on the server. On edge devices, data is
usually insufficient [17]. In our considered scenario, the
edge client has a few training samples, which is the pri-
mary reason this client requires additional common knowl-
edge. Specifically, we only assign 1

20 , 1
50 , and 1

200 of the
Cifar100 dataset to the client, respectively, where the num-
ber of samples is the same for all the 100 class. In other
words, the client only has 23, 9, and 2 training samples per
class in these three settings, respectively. From the view of
few-shot learning [15], they are 100-way 23-shot, 100-way
9-shot, and 100-way 2-shot settings. Then, following the
setting in the main body, we split the data into a training set
(75%) and a test set (25%).

As demonstrated in Tab. 2, our KTL yields more im-
provement when the client has limited data, attributed to
the introduction of additional pre-existing knowledge from
the server-side pre-trained generator. However, according
to the results for 100-way 23-shot, if the data on the edge
client is not particularly scarce, simply introducing a pre-



Settings 100-way 23-shot 100-way 9-shot 100-way 2-shot

Client Data 12.53±0.39 7.55±0.41 4.44±1.66
Our KTL 13.02±0.43 8.88±0.62 8.76±2.25

Improvement 0.49 1.33 4.32
Improvement Ratio 3.91% 17.61% 97.29%

Table 2. The test accuracy (%) with Cifar100’s subsets on a single client using a small model i.e., the 4-layer CNN.

trained generator on the server without collaboration with
other clients (such as using HtFL) can hardly bring im-
provement. These findings regarding KTL highlight its abil-
ity to transfer knowledge from a pre-trained model to an
edge device with very limited data.

C. Additional Experimental Details

Datasets, pre-trained generators, and environment. We
use four datasets with their respective download links: Ci-
far101, Cifar1002, Flowers1023, and Tiny-ImageNet4. We
can fetch the public pre-trained generators with their re-
spective download links: StyleGAN-XL5, StyleGAN3 (pre-
trained on AFHQv2)6, StyleGAN3 (pre-trained on Bench)7,
StyleGAN3 (pre-trained on FFHQ-U)8, StyleGAN3 (pre-
trained on WikiArt)9, and Stable Diffusion (v1.5)10. All
our experiments are conducted on a machine with 64 In-
tel(R) Xeon(R) Platinum 8362 CPUs, 256G memory, eight
NVIDIA 3090 GPUs, and Ubuntu 20.04.4 LTS.
Hyperparameter settings. Besides the hyperparameter
setting provided in the main body, we follow each baseline
method’s original paper for their respective hyperparameter
settings. LG-FedAvg [8] has no additional hyperparame-
ters. For FedGen [20], we set the noise dimension to 32,
its generator learning rate to 0.1, its hidden dimension to
be equal to the feature dimension, i.e., K, and its server

1https : / / pytorch . org / vision / main / generated /
torchvision.datasets.CIFAR10.html

2https://pytorch.org/vision/stable/generated/
torchvision.datasets.CIFAR100.html

3https://pytorch.org/vision/stable/generated/
torchvision.datasets.Flowers102.html

4http://cs231n.stanford.edu/tiny-imagenet-200.
zip

5https://s3.eu- central- 1.amazonaws.com/avg-
projects/stylegan_xl/models/imagenet64.pkl

6https://api.ngc.nvidia.com/v2/models/nvidia/
research/stylegan3/versions/1/files/stylegan3-t-
afhqv2-512x512.pkl

7https : / / g - 75671f . f5dc97 . 75bc . dn . glob . us /
benches/network-snapshot-011000.pkl

8https://api.ngc.nvidia.com/v2/models/nvidia/
research/stylegan3/versions/1/files/stylegan3-r-
ffhqu-256x256.pkl

9https://lambdalabs.com/blog/stylegan-3
10https : / / huggingface . co / runwayml / stable -

diffusion-v1-5/tree/main

learning epochs to 100. For FedGH [18], we set the server
learning rate to be the same as the client learning rate, i.e.,
0.01. For FML [12], we set its knowledge distillation hyper-
parameters α = 0.5 and β = 0.5. For FedKD [16], we set
its auxiliary model learning rate to be the same as the client
learning rate, i.e., 0.01, Tstart = 0.95, and Tend = 0.95.
For FedDistill [3], we set γ = 1. For FedProto [13], we
set λ = 0.1. For our FedKTL, we set K = C, µ = 50,
λ = 1, ηS = 0.01 (server learning rate), BS = 100 (server
batch size), and ES = 100 (the number of server training
epochs), by using grid search in the following ranges on
Tiny-ImageNet:
• µ: {1, 10, 20, 50, 80, 100, 200}
• λ: {0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100}
• ηS : {0.0001, 0.001, 0.01, 0.1, 1}
• BS : {1, 10, 50, 100, 200, 500}
• ES : {1, 10, 50, 100, 200, 500, 1000}
Besides, we use Adam [7] for F training following Fed-
Gen, set s = 64 and m = 0.5 following ArcFace loss [1],
and use the radial basis function (RBF) kernel for the kernel
function κ in LMMD. We use these settings for all the tasks.
Auxiliary model in FML and FedKD. According to
FedKD and FML, the auxiliary model needs to be designed
as small as possible to reduce the communication overhead
for model parameter transmitting, so we choose the small-
est model to be the auxiliary model for FedKD and FML in
any model heterogeneity scenarios.

D. Privacy-Preserving Discussion (Continued)
Here we further discuss the privacy-preserving capability of
our FedKTL when a client has the potential to recover data
from other clients. When a client receives additional global
knowledge (with data belonging to the labels never seen
before), the client is still unable to discern which image-
vector pair belongs to which client (or group of clients),
and thus cannot disclose the local data of other individual
clients. As a result, transmitting class-level prototypes is
a common practice in FL (e.g., FedProto [13]). Secondly,
in §3.3.5, we have provided three reasons supporting the
privacy-preserving capabilities of our FedKTL based on its
design philosophy. Moreover, our FedKTL is compatible
with privacy-preserving techniques, such as adding noise,
resulting in only a slight decrease in accuracy (see Table 3).

https://pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.html
https://pytorch.org/vision/main/generated/torchvision.datasets.CIFAR10.html
https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR100.html
https://pytorch.org/vision/stable/generated/torchvision.datasets.CIFAR100.html
https://pytorch.org/vision/stable/generated/torchvision.datasets.Flowers102.html
https://pytorch.org/vision/stable/generated/torchvision.datasets.Flowers102.html
http://cs231n.stanford.edu/tiny-imagenet-200.zip
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet64.pkl
https://s3.eu-central-1.amazonaws.com/avg-projects/stylegan_xl/models/imagenet64.pkl
https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-afhqv2-512x512.pkl
https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-afhqv2-512x512.pkl
https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-t-afhqv2-512x512.pkl
https://g-75671f.f5dc97.75bc.dn.glob.us/benches/network-snapshot-011000.pkl
https://g-75671f.f5dc97.75bc.dn.glob.us/benches/network-snapshot-011000.pkl
https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-256x256.pkl
https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-256x256.pkl
https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-256x256.pkl
https://lambdalabs.com/blog/stylegan-3
https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main
https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main


— NC NG NC + NG

FedKTL 53.16 52.73 51.16 50.51

Table 3. The test accuracy (%) on Flowers102 in the practical
setting using HtFE8 with noisy uploaded client prototypes (NC)
and noisy generated image-vector pairs (NG). Following Fed-
PCL [14]’s privacy-preserving settings, we add Gaussian noise to
the images and vectors before transmitting with a controllable pa-
rameters scale (s) and perturbation coefficient (p). We follow Fed-
PCL to set s = 0.05 and p = 0.2 for vectors (or prototypes) and
set s = 0.2 and p = 0.2 for images.

E. Convergence Analysis

0 50 100 150 200 250 300
Communication Iterations

0

10

20

30

Tr
ai

ni
ng

 E
rro

r

Figure 3. The training error curve for our FedKTL on Flowers102
using HtFE8 in the practical setting.

We show the training error curve of our FedKTL in
Fig. 3, where we calculate the training error on clients’
training sets in the same way as calculating test accuracy
in the main body. According to Fig. 3, our FedKTL opti-
mizes quickly in the initial 80 iterations and gradually con-
verges in the subsequent iterations. Besides, our FedKTL
maintains stable performance after converging at around the
120th iteration.

F. Hyperparameter Experiments

To study the effect of hyperparameters in our FedKTL, we
vary the value of each hyperparameter when keeping other
parameters fixed, which are tuned on Tiny-ImageNet. In-
creasing the ETF dimension K transmits more client knowl-
edge to the server and improves accuracy, but this approach
increases communication cost (see Tab. 4). To save commu-
nication resources, we set K = C in practice. According to
Tab. 5, setting a value larger than 50 for µ can achieve an
accuracy larger than 53%, which means that the importance
of LM

i should be emphasized. However, overly large values
of µ can also lead to a decrease in accuracy. In contrast, in
Tab. 6 we find that the optimal value for the server’s λ is typ-
ically less than 10 on Flowers102, as too large values of λ

tend to weaken the domain alignment. Regarding the server
hyperparameters ηS and ES , our FedKTL can achieve bet-
ter performance when using larger values for these param-
eters, as shown in Tab. 7 and Tab. 8. On the contrary, a
smaller BS usually improves the performance of our Fed-
KTL (see Tab. 9). In addition to the findings mentioned
above, we also discover that the best combination of hyper-
parameters for Tiny-ImageNet is not necessarily the best for
the Flowers102 dataset. While the default hyperparameter
setting performs excellently, it is important to note that for
a new dataset, one may need to re-tune the hyperparameters
to achieve the best performance.

G. Additional Ablation Study
By default, in the main body, we adopt the ArcFace loss [1]
as LA

i . Specifically, we have

LA
i = E(x,y)∼Di

− log
es(cos (θy+m))

es(cos (θy+m)) +
∑C

c=1,c ̸=y e
s cos θc

,

(1)
where θy is the angle between gi(x) and vy , s and m are
the re-scale and additive hyperparameters [1], respectively.
Here, we adopt a more classical practice for LA

i . Specif-
ically, we replace the ArcFace loss with the contrastive
loss [1, 2]. In other words, we set s = 1 and m = 0 in
LA
i to achieve this replacement, so we have

LA
i = E(x,y)∼Di

− log
ecos θy

ecos θy +
∑C

c=1,c̸=y e
cos θc

. (2)

We denote this variant of FedKTL as *LA
i .

We conduct experiments on four datasets using Eq. (2)
and show the test accuracy in Tab. 10. We observe that
the impact of replacing LM

i varies across different datasets.
However, it is consistent that removing the ArcFace loss
leads to a decrease in accuracy.

H. Visualizations of Data Distributions
We illustrate the data distributions (including training and
test data) in the experiments here.



K = C = 102 K = 500 K = 1000

Accuracy 53.16 54.42 53.90
Upload 0.07M 0.35M 0.69M

Table 4. The test accuracy (%) and upload communication cost of our FedKTL on Flowers102 in the practical setting using HtFE8 with
different K. “M” is shorter for a million.

µ = 1 µ = 10 µ = 20 µ = 50 µ = 100 µ = 200

Accuracy 48.09 51.01 52.83 53.16 53.99 53.43

Table 5. The test accuracy (%) of our FedKTL on Flowers102 in the practical setting using HtFE8 with different µ.

λ = 0.01 λ = 0.1 λ = 1 λ = 10 λ = 100

Accuracy 53.28 53.30 53.16 53.06 48.45

Table 6. The test accuracy (%) of our FedKTL on Flowers102 in the practical setting using HtFE8 with different λ.

ηS = 0.0001 ηS = 0.001 ηS = 0.01 ηS = 0.1

Accuracy 49.84 51.51 53.16 53.62

Table 7. The test accuracy (%) of our FedKTL on Flowers102 in the practical setting using HtFE8 with different ηS .

ES = 10 ES = 50 ES = 100 ES = 200 ES = 500

Accuracy 52.00 52.94 53.16 53.83 54.35

Table 8. The test accuracy (%) of our FedKTL on Flowers102 in the practical setting using HtFE8 with different ES .

BS = 10 BS = 50 BS = 100 BS = 200 BS = 500

Accuracy 54.97 54.76 53.16 53.93 53.26

Table 9. The test accuracy (%) of our FedKTL on Flowers102 in the practical setting using HtFE8 with different BS .

Cifar10 Cifar100 Flowers102 Tiny-ImageNet

FedKTL 87.63 46.94 53.16 28.17
*LA

i 85.28 41.63 51.30 27.52

∆ -2.35 -5.31 -1.86 -0.65

Table 10. The test accuracy (%) of our FedKTL’s variant *LA
i on four datasets in the practical setting using HtFE8.



0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0
1
2
3
4
5
6
7
8
9

C
la

ss
 ID

s

(a) Cifar10

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(b) Cifar100

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(c) Flowers102

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

50

100

150

200

C
la

ss
 ID

s

(d) Tiny-ImageNet

Figure 4. The data distribution of each client on Cifar10, Cifar100, Flowers102, and Tiny-ImageNet, respectively, in the pathological
settings. The size of a circle represents the number of samples.



0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0
1
2
3
4
5
6
7
8
9

C
la

ss
 ID

s

(a) Cifar10

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(b) Cifar100

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(c) Flowers102

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Client IDs

0

50

100

150

200

C
la

ss
 ID

s

(d) Tiny-ImageNet

Figure 5. The data distribution of each client on Cifar10, Cifar100, Flowers102, and Tiny-ImageNet, respectively, in practical settings
(β = 0.1). The size of a circle represents the number of samples.



0 10 20 30 40 50
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(a) 50 clients

0 20 40 60 80 100
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(b) 100 clients

0 25 50 75 100 125 150 175 200
Client IDs

0

20

40

60

80

100

C
la

ss
 ID

s

(c) 200 clients

Figure 6. The data distribution of each client on Cifar100 in the practical setting (β = 0.1) with 50, 100, and 200 clients, respectively. The
size of a circle represents the number of samples.



References
[1] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 3, 4

[2] Munawar Hayat, Salman Khan, Syed Waqas Zamir, Jianbing
Shen, and Ling Shao. Gaussian affinity for max-margin class
imbalanced learning. In IEEE International Conference on
Computer Vision (ICCV), pages 6469–6479, 2019. 4

[3] Eunjeong Jeong, Seungeun Oh, Hyesung Kim, Jihong Park,
Mehdi Bennis, and Seong-Lyun Kim. Communication-
efficient on-device machine learning: Federated distillation
and augmentation under non-iid private data. arXiv preprint
arXiv:1811.11479, 2018. 3

[4] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 1

[5] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2020.

[6] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2021. 1

[7] Diederik P Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In International Conference on
Learning Representations (ICLR), 2015. 3

[8] Paul Pu Liang, Terrance Liu, Liu Ziyin, Nicholas B Allen,
Randy P Auerbach, David Brent, Ruslan Salakhutdinov, and
Louis-Philippe Morency. Think locally, act globally: Fed-
erated learning with local and global representations. arXiv
preprint arXiv:2001.01523, 2020. 3

[9] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized
Data. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017. 2

[10] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-

thesis with latent diffusion models. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 1

[11] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. In ACM SIG-
GRAPH 2022 conference proceedings, pages 1–10, 2022. 1

[12] Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang
Huang, Pan Zhou, Kun Kuang, Fei Wu, and Chao Wu. Fed-
erated mutual learning. arXiv preprint arXiv:2006.16765,
2020. 3

[13] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu,
Jing Jiang, and Chengqi Zhang. Fedproto: Federated Proto-
type Learning across Heterogeneous Clients. In AAAI Con-
ference on Artificial Intelligence (AAAI), 2022. 3

[14] Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and
Jing Jiang. Federated learning from pre-trained models: A
contrastive learning approach. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2022. 4

[15] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M
Ni. Generalizing from a few examples: A survey on few-shot
learning. ACM computing surveys (csur), 53(3):1–34, 2020.
2

[16] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang,
and Xing Xie. Communication-efficient federated learning
via knowledge distillation. Nature communications, 13(1):
2032, 2022. 3

[17] Qiong Wu, Xu Chen, Zhi Zhou, and Junshan Zhang. Fed-
home: Cloud-edge based personalized federated learning for
in-home health monitoring. IEEE Transactions on Mobile
Computing, 21(8):2818–2832, 2020. 2

[18] Liping Yi, Gang Wang, Xiaoguang Liu, Zhuan Shi, and Han
Yu. Fedgh: Heterogeneous federated learning with general-
ized global header. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia, 2023. 3

[19] Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhen-
gui Xue, Ruhui Ma, and Haibing Guan. FedALA: Adaptive
Local Aggregation for Personalized Federated Learning. In
AAAI Conference on Artificial Intelligence (AAAI), 2023. 2

[20] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-Free
Knowledge Distillation for Heterogeneous Federated Learn-
ing. In International Conference on Machine Learning
(ICML), 2021. 3


	. Using the Stable Diffusion Model
	. Preliminaries
	. Experimental Results

	. The Scenario With a Single Edge Client
	. Additional Experimental Details
	. Privacy-Preserving Discussion (Continued)
	. Convergence Analysis
	. Hyperparameter Experiments
	. Additional Ablation Study
	. Visualizations of Data Distributions

