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1. Datasets Details

In this section, we introduce the datasets we use and show
sampled BEV maps and front view images.
CLEVR. CLEVR [4] is a synthetic dataset, containing
cubes, spheres, and cylinders with different colors. We
adopt the official script1 for rendering. 80K images are col-
lected in total. The camera positions are fixed for all the
images. In Fig. 1, we show rendered images with their cor-
responding BEV maps. We demonstrate tight BEV maps
used in the ablation study which represent just the right
amount of objects as in the front views. In addition, we
also show BEV maps with broader paddings for improv-
ing the equivariance of the BEV-conditioned representation.
We concatenate together a one-hot vector which indicates
color and a one-hot vector which indicates shape at each
pixel of the BEV map.
3D-Front. 3D-Front [2, 3] is an indoor scene dataset, which
contains different kinds of furniture with fine details. We
use the public script2 for rendering. We filter out objects
with abnormal sizes and collect 2535 different scenes in to-
tal. For each scene, we render 20 images from different
camera poses. Fig. 2 shows sampled pairs of rendered im-
ages and BEV maps. Similar to CLEVR, for each scene, we
prepare a tight BEV map for the ablation study, and also a
broader version for sake of equivariance. The channel num-
ber of the BEV map is one. For each pixel, 0 indicates not
occupied by any furniture, while 1 indicates occupied. We
do not include any categorical information in the BEV map.
Instead, the generator shall infer such knowledge from size,
shape, and relative positions between different objects.
Carla. Carla [1] is a self-driving research simulator that
offers a variety of realistic visual patterns, including di-
verse weather conditions and different types of scenes rang-
ing from rural to urban. In our research, we employ a car
equipped with a PID controller to autonomously navigate
through the town, capturing images with a front-facing cam-

1https://github.com/facebookresearch/clevr-dataset-gen
2https://github.com/DLR-RM/BlenderProc/blob/main/examples

era. A total of 80K images are collected during the process.
The relative camera positions to the car remain fixed for all
the images. Additionally, we generate the semantic bird’s-
eye view (BEV) map following the official primitive guide-
lines. Fig. 3 shows sampled images and BEV maps.

2. Implementation Details
We implemented a U-Net architecture for our generator,
which consists of four encoders followed by four decoders.
Our input is a Fourier feature of shape 256 × 256 × 256,
which is computed by StyleGAN3’s SynthesisInput
module. Each encoder downsamples the feature map by a
factor of 2 until it reaches a resolution of 16× 16.

Each encoder in our U-Net architecture includes a down-
sample layer, a low-pass filter, an SEL module, and two
layers of modulated convolutions. The low-pass filter is de-
signed as a finite impulse response (FIR) filter. The kernel
size in the modulated convolutions is 3, while it is 1 in the
SEL module. The SEL module takes the similar design as in
[5], while we add a low-pass filter after the downsampling
operation. The decoders share a similar architecture design
with the encoders, except that there is no low-pass filter in
the decoders. This is because the upsampling operation in
the decoders does not limit the bandwidth of the signal.

3. Infinite Generation
In this section, we make a detailed discussion about how to
perform infinite generation over CLEVR and provide more
visual examples.
How to synthesize infinite 3D scene? As illustrated by
Fig. 4, we generate arbitrary-scale 3D scenes in a divide-
and-conquer manner. To generate global scenes, we begin
by dividing the global BEV maps into smaller local ones by
a sliding window. Using these local BEV maps as input, we
generate 3D scenes and obtain multiple first view images.
To form the final global scene, we extract the middle line
of pixels from each image and concatenate them together.
This process allows us to combine the information from all
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Figure 1. Sampled front view images and BEV maps on CLEVR. Row A shows rendered front view images. Row B and C show
corresponding BEV maps without and with broader paddings.
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Figure 2. Sampled front view images and BEV maps on 3D-Front. Row A shows rendered front view images. Row B and C show
corresponding BEV maps without and with broader paddings.

the local BEV maps and generate a complete representation
of the global scene. It is worth mentioning that, during the
divide stage, the moving window is shifted pixel by pixel.

Such a design for infinite-scale scene generation places a
significant demand on the equivariance property of the gen-

erator, as it requires the generator to maintain consistency
at a pixel granularity level. An additional benefit of this
approach is that by generating local frames and combining
them, we can obtain a traversing video: by simply stacking
the generated frames, we can create a video that allows for



Figure 3. Sampled front view images and BEV maps on Carla. The up row shows paired front view images and BEV maps. The bottom
row shows diverse weather conditions.
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Figure 4. Illustration of how to perform infinite-scale 3D scene generation.

seamless exploration of the entire scene. Videos are zipped
in the Supplementary Material.

If we do not need traversing video, but only want to get
a composite image of the global scene, we can optimize
the pipeline by increasing the sliding window step size to
Nstep. This approach involves collecting Nloc consecutive
lines of pixels from each synthesized image and concate-
nating them to form the global view. Leveraging the per-
spective relationship, we can determine that Nloc is equal to

1
fnorm

·Nstep, where fnorm represents the normalized focal
length. Fig. 5 shows the results when Nstep equals 1, 10,
20, 30, 40. Serrated artifacts can be observed as Nstep in-
creases, while Nstep = 10 achieves a good balance between

efficiency and quality of large-scale 3D scene synthesis.
More samples. We show more synthesized large scene in
Fig. 6. The corresponding traversing videos could be found
at the Supplementary Material.
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Figure 5. Synthesized results over different Nstep choices.
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Figure 6. Synthesized large-scale 3D scene.
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