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1. Granger Causality Test
To enhance the reliability of our hypothesis, We employ
the Granger Causality Test to investigate the presence and
strength of the bidirectional causality. We utilize two fea-
ture extractors to derive information from human relations
and human-object interactions separately. Both of these fea-
ture extractors are consistent with the one used in our Bi-
Causal framework. We compare two models: one that in-
cludes only the auto-regressive model of human relations
feature sequences and another that combines human rela-
tions features and human-object interaction features in a
multiple regression model. By comparing the performance,
we can evaluate whether human-object interactions causally
influence human relations. A large disparity in the impacts
indicates a robust causality relationship. The same approach
can also be employed to ascertain the causal impact of hu-
man relations on human-object interactions.

Auto-regressive model. We estimate the self-influence
with the residual between the human relation feature and the
reconstructed relation feature, which is reconstructed with
the historical feature of the human relation itself. We use
Ri ∈ RD (clsrela obtained in the main text method) to de-
note human relation features. Based on the past t instances
of human relation features, we employ a transformer en-
coder En(·) to reconstruct human relation features.

En() = Encoder(cat()) (1)

[R̂k,Rlist] = En([token,Rk−t, . . . ,Rk−2,Rk−1]) (2)

where we utilize R̂k as reconstructed feature for comparison
with the feature Rk. token is a fixed, initialized feature used
to learn from relation features and generate R̂k. The self-
influence ssr1 is estimated with the sum of squares residual
(SSR) and we employ SSR as the loss function for training
the model.

ssr1 =
∑
k

||R̂k − Rk||22 (3)

Multiple-regression model. In this model, apart from
human relation features, we introduce human-object inter-
action features for feature reconstruction, aiming to esti-
mate the causal impact of the latter on the former. We still
use a feature sequence of length t as input and compare it
with the human relation feature Rk.

[R̂
I

k,Rlist] = En([token,Rk−t, Ik−t, . . . ,Rk−1, Ik−1])
(4)

ssr2 =
∑
k

||R̂
I

k − Rk||22 (5)

where Ii ∈ RD (clsinter obtained in the main text method)
denotes a human-object interaction features and R̂

I

k means
the reconstructed with I. We still employ ssr2 as the loss
function for training this model.

Since the sum of squares of random variables following
a Gaussian distribution follows the chi-squared (χ2) distri-
bution, the prediction error, being a sum of squares, also
follows the χ2 distribution. Therefore, we can construct an
F-distribution for hypothesis testing.

FI→R =
(ssr1 − ssr2)/td

ssr2/(nt −m)
(6)

Once we establish the significance level α, the value of
FI→R can be used to validate the causal relationship. The
causal impact of human relations on human-object inter-
actions can also be validated using the methods described
above. According to Equation 6, we obtain two F-statistics,
FR→I and FI→R, which indicate the level of confidence
in the bidirectional causality between human relations and
human-object interactions.

2. Comparision with SOTA in Weakly Super-
vised Group Activity Recognition

In real-world applications, Group Activity Recognition
(GAR) faces numerous obstacles, particularly with the
scarcity of extensive annotations such as bounding boxes
and individual actions. Consequently, Yan et al. [14] in-
troduced Weakly Supervised GAR (WSGAR), which elim-
inates the need for actor-level labels in both training and
inference, thereby further reducing annotation costs. Our
approach demonstrated excellent efficacy in the fully super-
vised GAR. To more rigorously validate the effectiveness of
our Bi-Causal model, we conducted tests within a weakly
supervised scenario.

NBA dataset. The NBA dataset [14] comprises a total
of 9,172 labeled clips from 181 NBA videos, with 7,624
clips designated for training and 1,548 clips earmarked for
testing. Presently, it stands as the singular dataset posited
for WSGAR and the most extensive dataset for group ac-
tivity recognition. Each clip is annotated with one of nine
group activities, without information on individual actions
or bounding boxes. In terms of evaluation, we employ the
metrics of Multi-class Classification Accuracy (MCA) and
Mean Per Class Accuracy (MPCA), the latter chosen to ad-
dress the class imbalance inherent in the dataset.

The NBA dataset lacks annotations such as bounding
boxes and individual action labels, making it challenging to



Method Backbone NBA W-Volleyball

AT [2] ResNet-18 47.1 / 41.5 84.3 / 89.6
SAM [14] Incep-v3 49.1 / 47.5 – / 94.0
SAM [14] ResNet-18 54.3 / 51.5 86.3 / 93.1
Dual [3] Incep-v3 51.5 / 44.8 – / 95.8
SACRF [7] ResNet-18 56.3 / 52.8 83.3 / 86.1
ARG [12] ResNet-18 59.0 / 56.8 87.4 / 92.9
DIN [16] ResNet-18 61.6 / 51.0 86.5 / 93.1

Ours ResNet-18 70.3 / 64.5 93.4 / 96.7

Table 1. Comparision with state-of-the-art methods on the NBA
and the Weakly supervised VOLLEYBALL dataset following met-
rics adopted in [14]. For the NBA dataset, we employ MCA
(left) and MPCA (right) for evaluation. For the Weakly supervised
VOLLEYBALL, we adopt MCA (left) and Merged MCA (right) for
evaluation.

extract corresponding keypoint information. Due to the de-
sign of our method for fully supervised tasks, it proves chal-
lenging for us to conduct experiments on the NBA dataset.
Inspired by [4], we situate a Transformer encoder on the
convolutional neural network backbone. Employing the en-
coder on the feature map directs attention to entities in-
volved in group activities, thereby circumventing the need
for explicit object detection and pose estimation. Specifi-
cally, we define learnable tokens as inputs to the encoder.
These tokens, guided by the attention mechanism, learn and
localize the local context of group activities, encompassing
both individuals and objects. Through these steps, we at-
tain the required feature inputs (person features and object
features), enabling the application of our method in unsu-
pervised scenarios.

The experimental results on the NBA dataset are pre-
sented in Table 1. In comparison to methods such as
ARG [12] and DIN [16], our approach achieves the optimal
outcomes, exhibiting a nearly 10% lead in both MCA and
MPCA metrics. Dual [3] and our Bi-Causal both exhibit
commendable performance on the VOLLEYBALL dataset.
However, a substantial disparity is observed between them
on the NBA dataset, highlighting the exceptional efficacy of
our method in the context of sports group activities.

Weakly supervised VOLLEYBALL dataset. To ensure
a fair comparison with existing methods, we also validate
our method on the Weakly Supervised setting of the VOL-
LEYBALL dataset. We adopt Multi-class Classification Ac-
curacy (MCA) and Merged MCA for evaluation, Merged
MCA means to merge the classes right set and right pass
into right pass-set, and left set and left pass into left pass-
set as in SAM [14] for a fair comparison.

In the pursuit of equitable comparison, we refrained
from utilizing bounding boxes and individual action label
information within the dataset and adopted a processing
approach akin to that of the NBA dataset. As indicated

in Table 1, our method surpasses all other approaches in
both MCA and Merged MCA on the VOLLEYBALL dataset,
achieving the highest performance. It is worth mention-
ing that [14] and [1] previously pointed out the confusion
in labeling the pass and set categories in the VOLLEYBALL
dataset. Consequently, we merged these two categories and
trained the model in a fully supervised manner, resulting in
a final group activity recognition accuracy of 98.4%.

In contrast to the NBA dataset, the human relations in
the VOLLEYBALL dataset exhibit more fixed patterns. The
causal relationships between human relations and human-
object interactions are clearer, and there are more easily dis-
cernible interactions between individuals and objects. This
facilitates our method in recognizing human-object interac-
tions and modeling bidirectional causality, resulting in su-
perior performance of Bi-Causal on this dataset.

3. Efficacy Analysis of Classification Results
The confusion matrices in Fig 1 show the comparison re-
sult of our method with the COMPOSER [17] and Group-
Former [5]. One of the main advantages of our approach
lies in the identification of two classes, pass and set. The
recognition accuracy of COMPOSER and GroupFormer in
the r-set class is 87% and 90% respectively, and the main
source of their errors is the r-pass class. A similar situa-
tion still occurs in the l-set and l-pass classes. At the same
time, our method performs relatively well with accuracy
rates above 93% for all categories and 95% for the r-set
class. Our Bi-Causal not only manifests superior perfor-
mance but also demonstrates stability across various cate-
gories. In group activity pass and set, human actions and
relations are more similar, but there are large differences in
human-object interaction. During the passing activity, the
interaction between individuals and objects is manifested
by an upward wrist strike, aiming to prevent the ball from
touching the ground. In contrast, within the setting activity,
the interaction between individuals and objects is charac-
terized by the palm supporting the ball, with the purpose
of facilitating an opportunity for a spike. These differences
can be captured by our Interaction Module and the bidirec-
tional causality between human relations and human-object
interactions can also make the Relation Module aware of
these differences, making our Bi-Causal better distinguish
the pass and set class.

As depicted in Figure 2, solely considering the interac-
tion between individuals and objects yields suboptimal re-
sults. This is attributed to the fact that human-object in-
teraction constitutes merely a fraction of group activities,
neglecting the collaborative relationships and mutual influ-
ences among individuals, posing challenges in comprehend-
ing group activities. Similarly, exclusively focusing on in-
terpersonal relationships makes it challenging for the model
to pinpoint the essence of group activities, rendering group



Figure 1. Comparison of confusion matrix of different methods. (a) Illustration of GroupFormer with RGB and keypoint modality. (b)
Illustration of COMPOSER with keypoint modality. (c) Illustration of our proposed Bi-Causal with keypoint modality. The ordinate
denotes the actual labels, while the abscissa signifies the predicted labels.

Figure 2. Comparison of confusion matrix of different methods using human relations or human-object interactions. (a) Illustration of
model based on human relations. (b) Illustration of model based on human-object interactions. (c) Illustration of relation and interaction
fusion model. (d) Illustration of our bidirectional causality model.

behavior susceptible to the impact of similar member ac-
tions. However, a simplistic fusion of human relations and
human-object interactions without considering their inter-
dependence leads to their segregation, hindering the com-
prehensive utilization of vital information provided by both.
Therefore, unifying the two through causal relationships al-
lows for the full exploitation of the strengths of human re-
lations and human-object interactions, offering more com-
prehensive support for the identification of group activities.

4. Feature Distributions

Fig 3 visualizes the feature distributions learned from the
test set of the VOLLEYBALL dataset. Our method adds
inter-class differences compared to the COMPOSER [17]
and GroupFormer [5], making the classification boundaries
more visible, especially between pass and set activity (both
right and left). This also coincides with what we discussed
in Section 3. Because of the similarities in the actions

of people in the pass and set categories, it is difficult for
relation-based methods to perceive the subtle differences.
However, these two categories have large differences in
human-object interaction, and these differences can be cap-
tured by our Interaction Module and causality communica-
tion channel, making our method better distinguish between
these categories.

5. HOI features

Our objective for the IM is to extract HOI features from
object features and human features. The HOI features are
correctly retrieved both in terms of method and effect. In
terms of the method, on the one hand, we utilize dot prod-
uct and graph structure to calculate the association among
entities, which is consistent with numerous HOI recognition
methods [8, 11, 13]; on the other hand , we employ Lperson

and Linter to constrain HOI features extraction with labels
of human actions and group activities, rather than relying



Figure 3. t-SNE visualization of activity representation on the VOLLEYBALL dataset.

on the identity, position, or category of individuals/objects.
The human action labels in the datasets (such as spiking,
and passing in volleyball data) encompass rich interaction
information and can semantically replace the verb labels in
HOI.

In terms of the effect, we adapt our IM to HOI recogni-
tion tasks (metrics are consistent with [8]). The results in
table 2 below show the effectiveness of IM.

Figure 4. Interaction matrix visualization.

We also visualize the interaction matrix (edges) of IM in 4,
with lighter colors indicating weaker attention. It shows that
the module focuses more on parts with greater interaction.

6. Efficiency Analysis
In this section, we compare our Bi-Causal with the current
SOTA methods based on execution efficiency. In addition to
recognition accuracy, the recognition efficiency of a model
is also an important metric for evaluating a model. This per-
formance metric is inevitable if a model is to be truly usable.
A model that uses only keypoint information has a greater
advantage in recognition efficiency since fewer data and
processing steps are used. Table 3 illustrates the efficiency
analysis of the current state-of-the-art methods on the VOL-
LEYBALL dataset. The reported numbers exclude the pa-
rameters from the backbone and embedding layer to en-
sure comparability with prior work (e.g., Inception-v3). Our
Bi-Causal demonstrates the best results with lower compu-

tational cost, requiring only 0.808 GFLOPs for a forward
pass. In contrast to Groupformer, which utilizes additional
RGB information and optical flow information, our method
not only exhibits a precision improvement of 0.4% but also
significantly reduces FLOPs from 10.99G to 0.808G. Both
COMPOSER and our Bi-Causal take keypoint-only modal-
ity as input. Despite incurring 0.03 GFLOPs increase com-
pared to COMPOSER, our method surpasses it by 1.5% in
group activity classification accuracy.

7. Implementation details

The human keypoint information encompasses various
types of information, including absolute and relative co-
ordinates, absolute and relative velocities, normalized co-
ordinates, and keypoint types in two-dimensional space.
We concatenate these pieces of information and incorpo-
rate temporal and spatial embeddings, resulting in a feature
dimensionality of D, which equals 256. To ensure a con-
sistent evaluation, we adopt a comparable approach to re-
lated studies [2, 12, 15–17] by utilizing a fixed input size
of T = 10 frames for training and testing on the VOL-
LEYBALL dataset and the COLLECTIVE ACTIVITY dataset.
While poses are estimated for all 41 frames in the VOLLEY-
BALL dataset, not all frames are utilized in constructing the
input. We employ an alternating sampling strategy, filtering
10 frames from the total of 41 frames for input. The number
of spatial and temporal encoder layers in our relation mod-
ule is set as 1. The dimension of the FFN layer in all Trans-
former encoders is set as 1024, and the non-linear activation
function is ReLU. The dropout rate of the Transformer en-
coder at each scale is set as 0.3. We utilize HRnet [10] to
obtain human keypoints following [2]. The keypoints we
use have 17 different types, and the person number of the
VOLLEYBALL dataset is 12 while the Collective Activity
is 13. When using the VOLLEYBALL dataset, the object’s
keypoints annotations are from [6]. To reduce the problem
caused by noisy estimated keypoints, we use the temporal



MPHOI-72 CAD-120
Method F1@10 F1@25 F1@50 F1@10 F1@25 F1@50

Relational BiRNN – – – 79.2 ± 2.5 75.2 ± 3.5 62.5 ± 5.5
ASSIGN [Ref4] 59.1 ± 12.1 51.0 ± 16.7 33.2 ± 14.0 88.0 ± 1.8 84.8 ± 3.0 73.8 ± 5.8
2G-GCN [Ref1] 68.6 ± 10.4 60.8 ± 10.3 45.2 ± 6.5 89.5 ± 1.6 87.1 ± 1.8 76.2 ± 2.8
Ours 68.5 ± 9.2 61.2 ± 10.4 43.2 ± 9.6 89.6 ± 2.1 87.2 ± 3.2 74.2 ± 4.1

Table 2. Effectiveness of IM in HOI recognition tasks.

Model #Params ↓ FLOPs ↓ Accuracy ↑
ARG [12] 25.18M 5.44G 91.0
AT [2] 5.24M 1.26G 92.8
SACRF 29.42M 74.75G 93.3
Dual [3] 4.29M 2.81G 94.4
COMPOSER [17] 11.10M 0.777G 94.6
GroupFormer [5] 81.52M 10.99G 95.7

Ours 28M 0.808G 96.1

Table 3. Efficiency comparison with the state-of-the-art method
on the VOLLEYBALL dataset in terms of FLOPs.

Object Keypoint Similarity (OKS) proposed in [9]. During
the training process, we employ the Adam optimizer to up-
date the network parameters, using a learning rate of 0.001.
A weight decay of 0.002 is applied, and a batch size of 128
is utilized for all datasets. The network is implemented us-
ing PyTorch and trained for 80 epochs on a single NVIDIA
Tesla V100 GPU with 16GB memory capacity.

8. Failure Case Analysis

In comparison to other methods, we observe improvements
in the recognition accuracy across multiple categories, par-
ticularly in the l-set category, reaching 95%. This enhance-
ment is attributed to our proposed causal model, which ef-
fectively leverages the bidirectional causality between hu-
man relations and human-object interactions. It adeptly
captures distinctions between set and pass activities, and
distinctions between set-pass and other categories. Accord-
ing to the confusion matrix of Bi-Causal in Figure 1, nearly
all misclassifications in the set category result from catego-
rizing it as pass, and the same pattern is observed for errors
in the pass category. This indicates that Bi-Causal effec-
tively distinguishes set and pass from other categories (such
as spike). Misclassifications between set and pass might be
attributed to potential label errors within the VOLLEYBALL
dataset itself [1, 14] (confusion exists in the labeling of the
pass and set categories). After merging the pass and set cat-
egories, our recognition accuracy reaches 98.4%.

As shown in Figures 1 and 5, our method does not exhibit
a prominent performance in the l-winpoint category. This is

attributed to the transient nature of winning activities, of-
ten lacking interactions between individuals and objects. In
such instances, group activities lack a unified tactical pur-
pose, and the bidirectional causality between human rela-
tions and human-object interactions is unclear, resulting in
a decline in model performance.
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