
Boosting Order-Preserving and Transferability for Neural Architecture Search:
a Joint Architecture Refined Search and Fine-tuning Approach

Supplementary Material

1. Search Space

Figure 1. The choice block of our search space based on
ShuffleNet-V2. From left to right: Choice 3, Choice 5, Choice 7,
Choice x. The figure is the same as SPOS as we use the same
search space.

Table 1. Design of our supernet. CB: choice block. GAP: global
average pooling. Stride: stride of the first layer in each block.

Input size Blocks Channels Repeat Stride
2242 × 3 3× 3 conv 16 1 2
1122 × 16 CB 64 4 2
562 × 64 CB 160 4 2
282 × 160 CB 320 8 2
142 × 320 CB 640 4 2
72 × 640 1× 1conv 1024 1 1
72 × 1024 GAP 1024 1 -

1024 fc 1000 1 -

Fig. 1 shows our choice block and search space, which is
based on ShuffleNet-V2, a strong lightweight convolutional
neural network. Table 1 shows our supernet. The super-
net helps embody our search space and provide a relative
performance estimator for different architectures.

2. Searching Result
Fig. 2 shows the searched architectures on ImageNet-
1K and ImageNet-100 respectively. We can see that for
ImageNet-100, it gets a rather simpler architecture in the

Figure 2. The searched architecture on ImageNet-1K and
ImageNet-100

same search space comparing with ImageNet-1K. This is in
line with our intuition.

3. Further discussion on Order-Preserving

We find that global order-preserving ability is relatively
general among different tasks while local order-preserving
ability is task-specific. In other words, some architectures
are in-born superior and are more likely to perform better
in different tasks. Our experimental results show that the
top 10 architectures searched on ImageNet-1K outperform
another 10 random architectures by 0.5% on Cifar-100 and
0.9% on ImageNet-100 on average. It implies global or-
der can be roughly preserved across datasets. However,
the ranking of the top 10 architectures by the performance
of Cifar-100 and ImageNet-100 is quite different from the
ranking by the performance of ImageNet-1K, showing that
the local relative ranking is task-specific since it can per-
form differently in different tasks.

This is an interesting finding and it can provide a rough
estimation and a better ’start point’ for searching.

4. Hyperparameter setting

For the training of supernet and the retraining of the
searched architectures, we use the same setting (including
hyper-parameters, data-augmentation strategy, learning-rate
decay, etc.) as SPOS. The batchsize is 1024, the supernet
is trained for 150,000 iterations and the searched architec-
ture is trained for 300,000 iterations on ImageNet-1K. For
ImageNet-100, the batchsize is 256, the supernet is trained
for 80,000 iterations and the searched architecture is trained
for 120,000 iterations.

The learning rate in supernet shifting is 1e-4. In total 640
samples are used to compute loss.



Figure 3. The correlation between flops and real-time latency on
Cifar dataset.

Table 2. The retrain result of ImageNet-100 using different con-
straint in searching.

Constraint Top-1 acc Flops Latency
Flops 85.61 299M 62.14ms

Latency 85.59 305M 58.31ms

5. Experiments on Edge Devices
Unlike cloud servers, edge devices usually have constraints
on the memory and computational resources, making it
intractable to load complex models. Neural architecture
search is one of the most popular and effective techniques
that can design efficient neural architectures for edge de-
vices with limited resources.

Our method can be easily applied to such an on-device
NAS task. Constraints on the resources, such as FLOPs and
latency, can be seen as multiple objects in the evolutionary
searching stage. Unlike most current NAS methods that use
FLOPs to approximate the efficiency of architecture, our
work also supports utilizing the latency from real-time mea-
surement on edge devices as one of the search objects.

Specifically, we apply our method on ROC-RK3588S-
PC, an 8-Core 8K AI Mainboard, and adopt the NSGA-II
multiple object optimization method to search the Pareto su-
perior to both accuracy and latency. The result is shown in
Table 2.

From the result, we can see that those architectures
which have lower Flops do not necessarily have lower la-
tency. Therefore, we further analyze the correlation be-
tween the FLOPs and latency on a large number of archi-
tectures. Results are shown in Fig. 3. The Kendall’s tau is
only 0.3, which shows a non-negligible gap between Flops
and real-time latency. Therefore, supporting real-time mea-
surements is vital for applying NAS to on-device AI.


	. Search Space
	. Searching Result
	. Further discussion on Order-Preserving
	. Hyperparameter setting
	. Experiments on Edge Devices

