
Supplementary Material for CaKDP

This document supplements our main submission “CaKDP:
Category-aware Knowledge Distillation and Pruning
Framework for Lightweight 3D Object Detection”. We first
report the experiment details of our proposed framework
in Section 1. In Section 2, we illustrate more technical
details. Besides, We provide the statistical analysis of
Figure 2 in Section 3. In Section 4, we demonstrate more
results of CaKDP. Moreover, in Section 5, we conduct
ablations to illustrate the influence of factor of KD loss
(α). In Section 6 and Section 7, we demonstrate that the
comparisons focus exclusively on distillation and pruning,
respectively. Furthermore, in Section 8, we discuss the
pipeline of our CaKDP framework. Finally, in Section 9,
we further visualize the predictions before and after
IOU-aware refinement.

1. Experiment Details
1.1. Dataset

KITTI Dataset: KITTI 3D object benchmark contains
7481 training samples and 7518 test samples. The train-
ing samples are further divided into a training set with 3712
samples and a validation set with 3769 samples. The dataset
has three categories (Car, pedestrian and cyclist). Also, the
dataset has three difficulty levels (easy, moderate, and hard)
based on the object size, occlusion, and truncation levels.

To detect the objects of KITTI, we voxelize the input
point cloud into a grid of resolutions [0.05, 0.05, 0.1] me-
ters in ranges [0, 70.4], [−40, 40], and [−3, 1] meters along
the X, Y, and Z axes, respectively. The maximum number
of points in each voxel is set to 5. To demonstrate the detec-
tion ability of the detectors on KITTI dataset, we evaluate
the results by moderate average precision @R40 (40 recall
positions) for each category and also calculate the moder-
ate mean average precision @R40 (moderate mAP@R40).
Following the default settings in OpenPCDet [10], for cars
we require an 3D bounding box overlap of 0.70, while for
pedestrians and cyclists we require a 3D bounding box over-
lap of 0.50.
Waymo Open Dataset (WOD): WOD is a large-scale pub-
lic autonomous driving dataset, which contains 1150 se-
quences in total, with 798 for training, and 202 for vali-
dation. It is collected by one long-range LiDAR sensor at
75 meters and four near-range sensors. We detect the cate-

gories of vehicle, pedestrian and cyclist in the WOD.
For WOD, point clouds are clipped into [−75.2, 75.2]

meters for X- or Y-axis, and [−2, 4] meters for Z-axis.
Voxel size is [0.1, 0.1, 0.15] meters by default. The maxi-
mum number of points in each voxel is set to 5. Following
[10], we evaluate the results by LEVEL 1/LEVEL 2 AP
(L1 AP/L2 AP) and LEVEL 1/LEVEL 2 APH (L1 APH/L2
APH) of each category and also calculate LEVEL 2 mAP
(L2 mAP) and LEVEL 2 mAPH (L2 mAPH).

For both KITTI dataset and WOD, following previous
works on pruning and KD [4, 6, 14], we leverage the num-
ber of parameters and FLOPs evaluate the efficiency of the
detectors.

1.2. Implementation Details

Implementation Details of KITTI Dataset: For all the ex-
periments on KITTI dataset, the factor of IOU loss (β) is
set to 1.0. In training phase, same as the default configu-
rations in OpenPCDet [10] and SpareseKD [12], the batch
size, number of epochs, weight decay, momentum are set to
4, 80, 0.01 and 0.9 respectively. The initial learning rate is
set to 0.003, and it is multiplied by 0.1 at the 35-th and 45-
th epochs. In inference phase, the threshold of IOU-aware
refinement module is set to 0.1 (i.e., δ = 0.1).

Additionally, when SECOND is student model, to se-
lect the representative samples from student detectors, we
set the threshold of NMS to 0.7, and samples with the con-
fidence (category prediction) less than 0.25 are ignored in
the NMS pipeline. For the combinations of “SECOND &
Voxel-RCNN” and “SECOND & PV-RCNN”, when retain-
ing ratios are equal to 1.0, 0.75 and 0.5, the factor of KD
loss (α) is set to 1.0; and when retaining ratio is equal to
0.30, the factor of KD loss is set to 0.1. Moreover, for the
combination of “SECOND & PartA2”, when retaining ra-
tios are equal to 1.0 and 0.75, the factor of KD loss is set
to 1.0; and when retaining ratios are equal to 0.50 and 0.30,
the factor of KD loss is set to 0.1.

Furthermore, when training the higher performance Cen-
terPoint, we set the threshold and confidence (category pre-
diction) in NMS pipeline to 0.7 and 0.1, respectively. For
the combination of “CenterPoint & Voxel-RCNN”, when
retaining ratios are equal to 1.0, 0.75 and 0.5, the factor of
KD loss is set to 2.0; and when retaining ratio is equal to
0.35, the factor of KD loss is set to 1.0. Besides, for “Cen-
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Type Model
Along y-axis Along x-axis

above red between red and blue (0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]

One-stage
SECOND [11] 44.10% 34.70% 1.19% 1.16% 11.51% 40.81% 40.67%
CenterPoint [13] 15.46% 64.61% 0.82% 3.59% 12.20% 39.82% 41.18%

Two-stage
Voxel-RCNN [2] 79.10% 16.09% 0.76% 2.60% 10.25% 39.12% 44.44%
PV-RCNN [7] 77.65% 16.64% 3.70% 0.66% 10.73% 37.87% 45.18%
PartA2 [8] 81.36% 13.70% 0.92% 2.95% 10.80% 38.02% 44.48%

Table 1. Proportions in Figure 2. For the statistics along y-axis and x-axis, we exclude the predictions with IOU of 0, and the predictions
with Cate-Pred of 0, respectively.

terPoint & PV-RCNN” and “CenterPoint & PartA2”, when
retaining ratios are equal to 1.0, 0.75 and 0.5; the factor of
KD loss is set to 1.0, and when retaining ratio is equal to
0.35, the factor of KD loss is set to 0.1.
Implementation Details of WOD and WOD-mini: For
all the experiments on WOD-mini and WOD, the factor of
IOU loss (β) is also set to 1.0. Besides, we set the threshold
of NMS to 0.7, and samples with the confidence (category
prediction) less than 0.1 are ignored in the NMS pipeline.
In training phase, we also keep the common configurations
used in OpenPCDet [10] and SpareseKD [12], the batch
size, number of epochs, initial learning rate, weight decay,
momentum are set to 4, 30, 0.003, 0.01 and 0.9 respectively.
In inference phase, the threshold of IOU-aware refinement
module is set to 0.05 (i.e., δ = 0.05).

Additionally, the factors of KD loss (α) are set to 0.5 and
1.0 for distillation in the combinations of “CenterPoint &
PV-RCNN++” and “CenterPoint & Voxel-RCNN”, respec-
tively.

2. More Technical Details
2.1. Selection Process for Representative Samples

In Section 3.2 of the main paper, we leverage non-maximum
suppression (NMS) to select representative samples (RSs)
from the student detector, and then the selected RSs are used
to match the teacher’s knowledge at corresponding location
for distillation. We here demonstrate the detailed selection
process for RSs:
(1) Firstly, all anchors are sorted from large to small based

on their category predictions (confidence scores), and
the top-N samples with higher confidence scores are
selected to form the current processing bank. Here, the
processing bank represents the set of samples that cur-
rently needs to be processed.

(2) Afterwards, we select the prediction with the highest
confidence score in the current processing bank, and
move it from the processing bank to the candidate bank,
where the candidate bank represents the set of RSs.

(3) After that, we calculate the intersection over union
(IOU) between the current sample with the highest
confidence and other anchors in the processing bank.
Subsequently, we remove samples from the processing
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Figure 1. Results of CaKDP with different α.

bank whose IOU exceeds the IOU threshold.
(4) We repeat step (2) and step (3) until there are no an-

chors left in the processing bank. The final candidate
bank comprises the set of RSs.

2.2. Details of IOU-aware Refinement Module

In Section 3.4, we propose the modified IOU-aware refine-
ment module to remove the redundant false positive (FP)
samples. We here demonstrate the architecture for predict-
ing IOU and the ground truth label of IOU:
Architecture of IOU head: We set the IOU head to be the
same as the classification head. In anchor-based detectors
(e.g., SECOND), it entails a single-layer 1x1 convolution.
In center-based detectors (e.g., CenterPoint), it involves a
stack of one-layer 3x3 convolution (including, batch norm
and ReLU) followed by one-layer 1x1 convolution.
Label of IOU: For the anchor-based detectors, the label is
the IOU between the anchor and the ground truth bounding
box, which ranges from 0 to 1. For center-based detectors,
the label takes values of either 0 or 1, where the IOU label
corresponding to the object center is set to 1, and the IOU
label corresponding to other position is set to 0.

3. Statistically Analyze of Figure 2
In Figure 2 of the main paper, we illustrate the gap between
heterogeneous detectors by demonstrating the distribution
of predictions of different detectors. In this subsection, Ta-
ble 1 statistically analyzes the proportion of predictions in
different intervals. This table numerically explains that the
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Model Retaining
Ratio

KD
Loss

Car Pedestrian Cyclist
Para. FLOPs Moderate

mAP@R40Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Stu SECOND [11] 1.00 ✘ 89.59 81.33 78.50 58.07 52.95 48.51 83.44 65.89 62.44 5.3 80.7 66.72
CenterPoint [13] 1.00 ✘ 86.61 78.50 76.44 56.26 51.85 47.22 84.77 67.78 64.06 5.8 96.5 66.04

Tea Voxel-RCNN [2] 1.00 ✘ 92.81 84.97 82.47 63.56 57.74 52.86 91.73 73.73 69.27 11.0 81.6 72.15

Stu SECOND [11] 1.00 ✔ 92.64 83.27 80.61 68.41 60.88 55.36 94.29 75.13 69.17 5.3 81.0 73.09
0.75 ✔ 91.85 83.09 80.27 69.71 62.91 57.31 91.67 73.48 68.65 3.3 54.2 73.16
0.50 ✔ 91.79 82.72 80.01 68.02 60.44 54.78 90.58 72.15 67.60 1.5 30.2 71.77
0.30 ✔ 89.23 79.18 74.97 60.23 53.78 49.15 82.79 66.61 62.48 0.6 17.7 66.52

CenterPoint [13] 1.00 ✔ 90.05 82.85 80.22 67.71 60.84 55.29 92.21 73.73 69.20 5.8 97.9 72.48
0.75 ✔ 90.22 82.72 80.18 65.36 59.59 53.15 90.15 73.51 69.03 3.5 67.3 71.94
0.50 ✔ 89.62 80.40 77.64 67.72 60.65 55.21 88.53 72.18 67.72 1.8 39.5 71.07
0.35 ✔ 85.93 73.98 68.90 66.18 58.65 52.22 84.05 66.73 62.73 1.1 31.3 66.45

Tea PV-RCNN [7] 1.00 ✘ 91.44 84.25 82.06 65.69 57.67 52.40 90.20 72.33 67.76 13.1 93.1 71.42

Stu SECOND [11] 1.00 ✔ 90.06 83.01 80.34 65.37 58.61 53.47 92.60 73.82 69.30 5.3 81.0 71.81
0.75 ✔ 91.66 82.69 80.14 67.93 59.92 54.59 90.84 71.99 67.50 3.3 54.2 71.53
0.50 ✔ 90.35 82.40 79.69 68.67 60.12 53.73 90.29 71.17 66.75 1.5 30.2 71.23
0.30 ✔ 89.39 79.46 74.93 58.79 52.96 48.47 82.21 65.86 61.68 0.6 17.7 66.10

CenterPoint [13] 1.00 ✔ 90.45 83.40 80.77 64.71 57.56 52.34 89.40 70.89 67.90 5.8 97.9 70.62
0.75 ✔ 90.35 83.32 80.60 65.16 58.10 52.86 91.37 72.82 68.71 3.5 67.3 71.41
0.50 ✔ 89.80 80.53 77.75 65.45 59.11 52.97 88.55 70.25 65.82 1.8 39.5 69.96
0.35 ✔ 85.84 74.06 69.22 65.80 58.12 52.52 84.61 67.08 62.69 1.1 31.3 66.42

Tea PartA2 [8] 1.00 ✘ 91.62 82.22 79.92 66.39 60.42 55.27 90.56 72.65 68.15 63.6 93.3 71.77

Stu SECOND [11] 1.00 ✔ 90.05 82.66 80.29 67.25 60.08 54.86 91.54 73.51 68.81 5.3 81.0 72.08
0.75 ✔ 90.31 82.85 80.20 68.02 60.51 54.40 92.03 73.86 69.13 3.3 54.2 72.41
0.50 ✔ 90.13 82.71 79.81 64.53 57.62 51.55 90.48 72.10 67.63 1.5 30.2 70.81
0.30 ✔ 88.74 77.18 74.41 58.82 53.38 48.92 82.23 66.5 62.09 0.6 17.7 65.69

CenterPoint [13] 1.00 ✔ 90.23 82.99 80.39 64.90 58.12 52.70 90.42 72.07 67.41 5.8 97.9 71.06
0.75 ✔ 90.22 83.05 80.47 63.00 58.12 52.01 92.28 73.29 68.77 3.5 67.3 71.49
0.50 ✔ 89.87 80.14 77.50 66.02 59.28 53.87 89.73 72.24 67.74 1.8 39.5 70.55
0.35 ✔ 85.55 74.85 70.35 63.71 57.73 53.31 83.26 65.15 61.44 1.1 31.3 65.91

Table 2. Results of CaKDP on KITTI Dataset. ‘Tea’ and ‘Stu’ represent teacher and student models, respectively. ‘Mod.’ represents
moderate, and ‘Para.’ represents parameter.

Model Retaining
Ratio

KD
Loss

Vehicle Pedestrian Cyclist
Para. FLOPs L2

mAP/mAPHL1 AP/APH L2 AP/APH L1 AP/APH L2 AP/APH L1 AP/APH L2 AP/APH

Stu CenterPoint [13] 1.00 ✘ 72.65 / 72.12 64.56 / 64.08 74.16 / 67.95 62.23 / 60.53 70.75 / 69.56 68.16 / 67.02 7.8 114.8 66.32 / 63.88

Tea PV-RCNN++ [9] 1.00 ✘ 77.50 / 77.02 69.08 / 68.64 79.56 / 73.38 71.04 / 65.32 72.75 / 71.66 70.09 / 69.04 16.1 123.5 70.07 / 67.67

Stu CenterPoint [13] 1.00 ✔ 74.72 / 74.24 66.32 / 65.88 77.97 / 72.25 69.43 / 64.14 73.25 / 72.15 70.56 / 69.50 7.8 116.2 68.77 / 66.51
0.70 ✔ 74.31 / 73.81 65.98 / 65.52 77.83 / 72.02 69.38 / 64.00 73.02 / 71.89 70.37 / 69.28 4.7 79.1 68.58 / 66.27
0.50 ✔ 73.28 / 72.77 64.94 / 64.47 76.90 / 70.93 68.41 / 62.90 72.87 / 71.71 70.21 / 69.09 2.8 55.6 67.85 / 65.48
0.35 ✔ 70.87 / 70.32 62.49 / 61.99 74.69 / 68.39 66.02 / 60.28 70.42 / 69.19 67.82 / 66.64 1.8 39.0 65.44 / 62.97

Tea Voxel-RCNN [2] 1.00 ✔ 76.88 / 76.44 68.54 / 68.13 79.31 / 73.59 70.74 / 65.42 72.49 / 71.45 69.83 / 68.83 18.7 117.6 69.70 / 67.46

Stu CenterPoint [13] 1.00 ✔ 74.91 / 74.42 66.55 / 66.11 77.96 / 72.29 69.49 / 64.23 72.96 / 71.83 70.28 / 69.20 7.8 116.2 68.78 / 66.51
0.70 ✔ 74.44 / 73.94 66.11 / 65.66 77.76 / 71.94 69.27 / 63.88 73.29 / 72.15 70.62 / 69.52 4.7 79.1 68.67 / 66.36
0.50 ✔ 72.94 / 72.44 64.56 / 64.11 76.92 / 70.96 68.34 / 62.85 72.78 / 71.62 70.12 / 69.00 2.8 55.6 67.67 / 65.32
0.35 ✔ 70.06 / 69.53 61.77 / 61.30 74.77 / 68.51 66.07 / 60.36 70.75 / 69.53 68.17 / 66.99 1.8 39.0 65.33 / 62.88

Table 3. Results on WOD-mini. ‘L1’ and ‘L2’ represent LEVEL 1 and LEVEL 2, respectively.

main discrepancy between heterogeneous detectors lies in
the category predictions.

4. Results of CaKDP

In Table 1, Table 3 and Table 5 of the main submitted
manuscript, we only report some of the key metric values
(moderate AP @R40, moderate mAP @R40, L2 mAP and
L2 mAPH) due to the page limitation policy. Hence, in
this section, we demonstrate all the results of our proposed

CaKDP in Table 2, Table 3 and Table 4.

5. Influence of Factor of KD Loss
In this section, we conduct experiments on the combination
of “CenterPoint & PV-RCNN++” (WOD) to illustrate the
influence of factor of KD loss (α) in Eq. (7) of main submit-
ted manuscript. We set the retaining ratio to 0.5, and other
configurations keep unchanged. The results of CaKDP with
different KD loss factors (α) are shown in Fig. 1. When α
= 0.5, the L2 mAP and L2 mAPH reach their peak values,
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Model Retaining
Ratio

KD
Loss

Vehicle Pedestrian Cyclist
Para. FLOPs L2

mAP/mAPHL1 AP/APH L2 AP/APH L1 AP/APH L2 AP/APH L1 AP/APH L2 AP/APH

Stu CenterPoint [13] 1.00 ✘ 74.21 / 73.67 66.25 / 65.76 76.26 / 70.16 68.50 / 62.86 72.09 / 70.96 69.47 / 68.38 7.8 114.8 68.07 / 65.66

Tea PV-RCNN++ [9] 1.00 ✘ 78.64 / 78.20 70.32 / 69.91 81.33 / 75.83 73.04 / 67.87 73.76 / 72.69 71.06 / 70.03 16.1 123.5 71.47 / 69.27

Stu CenterPoint [13] 1.00 ✔ 76.17 / 75.71 67.76 / 67.34 79.07 / 73.73 70.53 / 65.55 73.60 / 72.50 70.92 / 69.86 7.8 116.2 69.74 / 67.59
0.70 ✔ 76.03 / 75.55 67.72 / 67.27 79.20 / 73.74 70.80 / 65.69 72.84 / 71.75 70.16 / 69.11 4.7 79.1 69.56 / 67.36
0.50 ✔ 75.35 / 74.84 67.00 / 66.53 78.78 / 73.17 70.42 / 65.19 73.88 / 72.72 71.21 / 70.09 2.8 55.6 69.54 / 67.27
0.35 ✔ 73.21 / 72.70 64.87 / 64.41 77.27 / 71.28 68.76 / 63.23 73.08 / 71.91 70.39 / 69.26 1.8 39.0 68.01 / 65.63

Table 4. Results on full Waymo Open Dataset. ‘L1’ and ‘L2’ represent LEVEL 1 and LEVEL 2, respectively.

“SECOND & Voxel-RCNN”
(Para./ FLOPs: 5.3M/80.7G)

Method - Vanilla KD [3] GID [1] PD [15] SparseKD [12] CaKD

mAP 66.72 68.62 68.63 67.20 67.14 72.83

“CenterPoint & PV-RCNN++”
(Para./ FLOPs: 7.8M/114.8G)

Method - Vinalla KD [3] GID [1] PD [15] SparseKD [12] CaKD

mAPH 63.88 64.81 64.86 64.43 65.15 65.97

Table 5. Exclusive comparison on distillation.

which are 67.67% and 65.32%, respectively.

6. Exclusive Comparison on Distillation

In this subsection, we compare our CaKD with other KD
methods. Table 5 demonstrates the results of “SECOND
& Voxel-RCNN” on the KITTI dataset, and those of “Cen-
terPoint & PV-RCNN++” on the WOD-mini dataset. As
shown, our CaKD achieves higher accuracy student de-
tectors on both datasets. Particularly, our method signif-
icantly improves the performance of student models on
KITTI dataset, where CaKD provides SECOND with mAP
of 72.83%, while Vanilla KD, GID, PD and SparseKD
achieve 68.62%, 68.63%, 67.20%, 67.14%, respectively.
Therefore, our CaKD has ability to obtain the student de-
tector with higher performance.

7. Exclusive Comparison on Pruning

In this subsection, we compare our CaPr with L1 pruning
method [5], which leverages the L1 norm to evaluate the
importance of each filter. We set different pruning ratios
to compress SECOND on KITTI dataset while keeping the
default training configurations unchanged for retraining. As
shown in Table 6, our CaPr achieves higher mAP while
reducing more parameters and FLOPs. Therefore, CaPr
demonstrates its capability to produce lightweight student
detectors with appropriate architecture and parameters.

8. Pipeline of CaKDP Framework

CaKD and CaPr are two important modules in the training
phase of our proposed CaKDP framework. In this section,
we empirical study the influence of the order of these two
modules. We list four different pipelines as:

• #Mode 1: (1) KD: We first conduct CaKD to get the
complete one-stage student detector; (2) Pruning: After

that, we leverage CaPr to prune the distilled student detec-
tor; (3) Fine-tuning without KD loss: Then, we conduct
fine-tuning (without CaKD loss) to restore the accuracy
of the pruned detector. (4) KD: Finally, we further lever-
age CaKD to train the detector after fine-tuning, and get
the compact student detector with higher performance.

• #Mode 2: (1) KD: We first conduct CaKD to get the
complete one-stage student detector; (2) Pruning: After
that, we leverage CaPr to prune the distilled student de-
tector; (3) KD: Finally, we retrain the pruned detector by
final loss (containing CaKD loss) to restore the accuracy
of the pruned detector.

• #Mode 3: (1) Pruning: We first prune the pretrained
one-stage student detector; (2) Fine-tuning without KD
loss: After that, we conduct fine-tuning (without CaKD
loss) to restore the accuracy of the pruned detector. (3)
KD: Finally, CaKD is leveraged to improve the perfor-
mance of compact student detector after fine-tuning.

• #Mode 4 (Ours): (1) Pruning: We first prune the pre-
trained one-stage student detector; (2) KD: After that,
we retrain the pruned student detector by final loss (con-
taining CaKD loss) to restore the detection ability of the
pruned detector.

We take “SECOND & Voxel-RCNN” on KITTI dataset
as example to illustrate the influence of different pipelines.
The retaining ratio is set to 0.5, and other configurations re-
main unchanged. In Table 5, similar results are obtained
by four different pipelines. However, #Mode 4 (ours) has
the simplest and fastest training phase, while #Mode 1 to
#Mode 3 need more epochs to train the compact student
detector. Compared with #Mode 4, #Mode 1 contains a
fine-tuning step (without CaKD loss) and an additional KD
step (by training with final loss); #Mode 2 has an addi-
tional KD step (by training with final loss); and #Mode 3
provides a fine-tuning step (without CaKD loss). Therefore,
in all the experiments of our main submission, we utilize
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Method Retaining
Ratio

Car Pedestrian Cyclist
Para. FLOPs Moderate

mAP@R40Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND [11] 1.00 89.59 81.33 78.50 58.07 52.95 48.51 83.44 65.89 62.44 5.3 80.7 66.72

L1 [5] 0.7 89.12 80.80 77.78 54.40 48.98 44.71 82.45 65.73 62.26 2.6 39.5 65.17
CaPr 0.5 90.28 81.23 78.05 55.54 50.24 45.73 83.95 67.23 63.89 1.5 30.1 66.24

L1 [5] 0.4 87.63 76.33 73.43 51.05 44.89 41.10 72.75 57.47 54.07 0.9 13.2 59.56
CaPr 0.3 89.02 78.23 75.29 49.97 46.65 43.41 79.05 63.56 60.13 0.6 17.6 62.81

Table 6. Exclusive comparison on pruning.

Model Mode
Car Pedestrian Cyclist

Para. FLOPs Moderate
mAP@R40Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND-×0.5 #Mode 1 90.42 83.05 80.29 67.51 60.35 54.60 90.34 72.61 67.95 1.5 29.5 72.00
#Mode 2 90.56 82.74 79.96 67.53 60.18 54.30 91.46 72.58 67.89 1.5 29.5 71.83
#Mode 3 90.48 82.89 80.17 67.91 60.88 54.04 91.22 72.49 67.63 1.5 30.2 72.09
#Mode 4 (ours) 91.79 82.72 80.01 68.02 60.44 54.78 90.58 72.15 67.60 1.5 30.2 71.77

Table 7. Comparison of Different Pipelines of CaKDP Framework.

#Mode 4 as the pipeline of our proposed CaKDP frame-
work.

9. Visualization

In this section, we demonstrate more examples to visualize
the influence of modified IOU-aware refinement module.
As shown in Fig. 2, predictions without IOU-aware refine-
ment contain more false positive (FP) samples. Therefore,
our modified IOU-aware refinement module in CaKDP
framework has ability to remove redundant FP samples, and
further helps the framework to improve the accuracy of the
student detectors.

References
[1] Xing Dai, Zeren Jiang, Zhao Wu, Yiping Bao, Zhicheng

Wang, Si Liu, and Erjin Zhou. General instance distillation
for object detection. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
7842–7851, 2021. 4

[2] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou,
Yanyong Zhang, and Houqiang Li. Voxel r-cnn: Towards
high performance voxel-based 3d object detection. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
pages 1201–1209, 2021. 2, 3

[3] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 4

[4] Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun
Yuan, Yi Xu, Yen-Kuang Chen, Rong Jin, Yuan Xie, and
Sun-Yuan Kung. Chex: Channel exploration for cnn model
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12287–
12298, 2022. 1

[5] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv
preprint arXiv:1608.08710, 2016. 4, 5

[6] Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang,
Baochang Zhang, Yonghong Tian, and Ling Shao. Hrank:
Filter pruning using high-rank feature map. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1529–1538, 2020. 1

[7] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10529–10538, 2020. 2, 3

[8] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,
and Hongsheng Li. From points to parts: 3d object detection
from point cloud with part-aware and part-aggregation net-
work. IEEE transactions on pattern analysis and machine
intelligence, 43(8):2647–2664, 2020. 2, 3

[9] Shaoshuai Shi, Li Jiang, Jiajun Deng, Zhe Wang, Chaoxu
Guo, Jianping Shi, Xiaogang Wang, and Hongsheng Li. Pv-
rcnn++: Point-voxel feature set abstraction with local vector
representation for 3d object detection. International Journal
of Computer Vision, 131(2):531–551, 2023. 3, 4

[10] OpenPCDet Development Team. Openpcdet: An open-
source toolbox for 3d object detection from point clouds.
https://github.com/open-mmlab/OpenPCDet,
2020. 1, 2

[11] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 18(10):3337, 2018. 2,
3, 5

[12] Jihan Yang, Shaoshuai Shi, Runyu Ding, Zhe Wang, and Xi-
aojuan Qi. Towards efficient 3d object detection with knowl-
edge distillation. Advances in Neural Information Process-
ing Systems, 35:21300–21313, 2022. 1, 2, 4

[13] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11784–11793, 2021. 2, 3, 4

5

https://github.com/open-mmlab/OpenPCDet


[14] Haonan Zhang, Longjun Liu, Hengyi Zhou, Wenxuan Hou,
Hongbin Sun, and Nanning Zheng. Akecp: Adaptive knowl-
edge extraction from feature maps for fast and efficient chan-
nel pruning. In Proceedings of the 29th ACM International
Conference on Multimedia, pages 648–657, 2021. 1

[15] Linfeng Zhang, Runpei Dong, Hung-Shuo Tai, and Kaisheng
Ma. Pointdistiller: Structured knowledge distillation to-
wards efficient and compact 3d detection. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 21791–21801, 2023. 4

6



(a) Frame 1. (b) Frame 2.

(c) Frame 3. (d) Frame 4.

7
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(i) Frame 9. (j) Frame 10.

(k) Frame 11. (l) Frame 12.

Figure 2. Visualization of the predictions before and after IOU-aware refinement. In each subfigure, the upper one of the two images rep-
resents the predicted results without refinement, while the lower one represents predicted results with our proposed IOU-aware refinement.
The Green, yellow and blue boxes represent the predicted bounding boxes of Car, Pedestrian and Cyclist, respectively. The red boxes
represent the ground truth bounding boxes.
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