
(a) (b)

Figure 9. Visual illustrations of (a) all possible V2 that contain the
trigger e. (b) ∆w and ∆h for left-right layout.

A. Proof of Theorem 1
For simplicity, we prove the optimal locations of the refer-
ence object and trigger for left-right layout. The proof for
bottom-top layout is similar.
Computing p1(s) and p2(s)Given arbitrary s ∈ (0, S],
we aim to explicitly express the probabilities of p1(s) and
p2(s). For p1(s), since our attack separates the refer-
ence object and trigger apart without any overlap, we have
V1 ∩ e = ∅ as long as V1 ⊂ o. Therefore, we have:

p1(s) = Pr{(V1 ⊂ o) ∩ (V1 ∩ e = ∅)} = Pr{V1 ⊂ o}

Then, p1(s) can be computed as the ratio between the area
of upper-left corners of V1 such that V1 ⊂ o and that of all
possible V1 ⊂ b:

p1(s) = Pr{V1 ⊂ o}

=

(
(ow−s)(oh−s)
(bw−s)(bh−s) , s ∈ X1

0, s /∈ X1

(5)

where X1 = (0,min{ow, oh}]. We have X1 because V1

should not exceed the size of o.
Similarly, to achieve V2 ⊃ e, all possible V2 should be

within a (2s − l) × (2s − l) square region R, centered at
the e, as shown in Fig. 9(a). Since s is uniformly distributed
between 0 and S, the square region R may intersect with o
and boundaries of b when s is large, as shown in Fig. 9(b).
To satisfy V2 ∩ o = ∅ and V2 ⊂ b, desired V2 should be
only within the region of R that has no overlap with o and
boundaries of b. We assume the width and height of this
region as ∆w and ∆h. Given fixed bw, ox and ex, ∆w is
a function of crop size s and given fixed bh and ey , ∆h is
also a function of s. Thus, when the crop size is s, we can
denote the width and height of this region as ∆w(s) and
∆h(s). Then, we follow the same procedure as p1(s) to
obtain the probability p2(s) as:

p2(s) = Pr{(V2 ⊃ e) ∩ (V2 ∩ o = ∅)}

=

(
(∆w(s)−s)(∆h(s)−s)

(bw−s)(bh−s) , s ∈ X2

0, s /∈ X2

(6)

where X2 = (l,min{bw − (ox + ow), bh}]. We have X2

because V2 should be larger than the e but smaller than the
rectangle region of the background image excluding the o.

Recall that we are supposed to maximize the p in Equa-
tion 3 with aforementioned forms of p1(s) and p2(s). When
left-right layout is used, given any fixed bw and bh, we will
prove that 1) the optimal location of the reference object
in the background image is (o∗x, o

∗
y) = (0, 0), and 2) the

optimal location of the trigger is the center of the rectan-
gle region of the background image excluding the reference
object, i.e., (e∗x, e

∗
y) = (bw+ow−l

2 , bh−l
2).

Optimal location of the trigger: Let’s derive the optimal
location (e∗x, e

∗
y) of the trigger e first. In this case, param-

eters of b and o are fixed, which means only ex influences
∆w(s) and ey influences ∆h(s). We denote the horizontal
distance between e and o as d1 and the horizontal distance
between e and the right boundary of b as d2. Then we have:

d1 = ex − (ox + ow),

d2 = bw − (ex + l),
(7)

where both d1 and d2 depend on ex. Due to the symmetry
of the square region R, we can firstly assume e is closer to
the o than the right boundary of b (i.e., d1 ≤ d2), as shown
in Fig. 9(b). In this case, we express ∆w(s) as follows:

∆w(s) =

2s− l, s ∈ (min{X2}, d1 + l]

d1 + s, s ∈ (d1 + l, d2 + l]

bw − (ox + ow), s ∈ (d2 + l,max{X2}]
(8)

If there exists ex and e′x such that d1 < d′1 ≤ d′2 < d2,
we can obtain ∆w′(s)−∆w(s) as:

∆w′(s)−∆w(s) =

0, s ∈ (min{X2}, d1 + l]

s− (d1 + l), s ∈ (d1 + l, d′1 + l]

d′1 − d1, s ∈ (d′1 + l, d′2 + l]

(d2 + l)− s, s ∈ (d′2 + l, d2 + l]

0, s ∈ (d2 + l,max{X2}]

(9)

We have ∆w(s) ≤ ∆w′(s) holds for all s. In other words,
a larger d1 always results in a larger ∆w(s) regardless of
the value of s. Since we know that ∆w(s) is positively
correlated with p and we have d1 ≤ d2 by assumption, d1 =
d2 will achieve the optimal ∆w(s) for all s and maximize
the p. We should get the same optimal result (i.e., d1 = d2)
if we start by assuming d1 ≥ d2. Therefore, according to
Equation 7, we obtain e∗x as:

e∗x =
bw + ox + ow − l

2
(10)

It is noted that we will derive the optimal location of
the reference object (o∗x, o

∗
y) = (0, 0) for left-right lay-

out. Therefore, we can further reduce the Equation 10 as
e∗x =

bw+o∗x+ow−l
2 = bw+ow−l

2 .
Next, we denote the vertical distance between e and the

top boundary of b as d3 and the vertical distance between e
and the bottom boundary of b as d4:

d3 = ey

d4 = bh − (ey + l)
(11)

where both d3 and d4 depend on ey . By assuming d3 ≤ d4,
we express ∆h(s) as follows:

∆h(s) =

2s− l, s ∈ (min{X2}, d3 + l]

d3 + s, s ∈ (d3 + l, d4 + l]

bh, s ∈ (d4 + l,max{X2}]
(12)

If there exists ey and e′y such that d3 < d′3 ≤ d′4 < d4,
similar to Equation 9, we can show that ∆h(s) ≤ ∆h′(s)
holds for all s. In other words, a larger d3 always results in
a larger ∆h(s) regardless of the value of s. Since ∆h(s) is
also positively correlated with p and we have d3 ≤ d4, we
conclude that d3 = d4 will maximize the p. Therefore, we
obtain e∗y according to Equation 11 as:

e∗y =
bh − l

2
(13)

Optimal location of the reference object: Given (e∗x, e
∗
y),

our next step is to derive the optimal location (o∗x, o
∗
y) of

the reference object o such that p is maximized. Recall that
parameters of b are fixed, which means only ox influences
∆w(s) in this case. Assume there exists an o′x > ox, which
results in ∆w′′(s). Under the optimal location of the trigger,
we obtain ∆w′′(s)−∆w(s) as:

∆w′′(s)−∆w(s) =

0, s ∈ (min{X2}, f(o′x)]
bw − (o′x + ow)− (2s− l), s ∈ (f(o′x), f(ox)]

ox − o′x, s ∈ (f(ox),max{X2}]
(14)

where f(ox) = bw−ox−ow+l
2 indicates the smallest s such

that V2 touches the o and right boundary of b under the in-
put ox. We show that if o′x > ox, ∆w′′(s) ≤ ∆w(s) holds
for all s. In other words, a smaller ox always results in a
larger ∆w(s) regardless of the value of s. Since ∆w(s) is
positively correlated with p, we set ox = 0 to maximize the
p. As for oy , any oy ∈ [0, bh − oh] will lead to the same p.
Therefore, given any reference object and background im-
age, we always have (o∗x, o

∗
y) = (0, 0) for left-right layout.

B. Proof of Theorem 2
For left-right layout, we aim to prove that for any o and e,
given any width of the background image bw > ow, the op-
timal height of the background image should be the height
of the reference object, i.e., b∗h = oh. The proof of optimal
width for bottom-top layout is similar.

Given the optimal locations of reference object o and
trigger e in background image b, we obtain ∆h∗(s) and
∆w∗(s) as follows:

∆h∗(s) =

(
2s− l, s ∈ (min{X2}, bh+l

2]

bh, s ∈ (bh+l
2 ,max{X2}]

∆w∗(s) =

(
2s− l, s ∈ (min{X2}, bw−ow+l

2]

bw − ow, s ∈ (bw−ow+l
2 ,max{X2}]

(15)

In this case, we derive the marginal probability of p under
the optimal locations of o and e as:

p1p2 =

(
(ow−s)(oh−s)(∆w∗(s)−s)(∆h∗(s)−s)

(bw−s)2(bh−s)2 , s ∈ X
0, s /∈ X

(16)
where X = X1 ∩ X2 = (l,min{ow, oh, bw − ow}]. Recall
that we aim to derive the optimal bh (bh ≥ oh) such that p is
maximized. We firstly derive the optimal bh that maximizes
the marginal probability p1(s)p2(s) for a given s ∈ X . We
have:

argmax
bh

p1(s)p2(s) = argmax
bh

∆h∗(s)− s

(bh − s)2

= argmax
bh

[log(∆h∗(s)− s)− 2 log(bh − s)]
(17)

Let’s denote g(bh, s) = log(∆h∗(s) − s) − 2 log(bh − s).
We consider two scenarios:
(i). If there exists bh and b′h such that bh+l

2 <
b′h+l
2 ≤

max{X}, we can obtain g(b′h, s)− g(bh, s) as:

g(b′h, s)− g(bh, s) =

log (bh−s)2

(b′h−s)2 , s ∈ (min{X}, bh+l
2]

log (bh−s)(s−l)
(b′h−s)(b′h−s) , s ∈ (bh+l

2 ,
b′h+l
2]

log (bh−s)
(b′h−s) , s ∈ (

b′h+l
2 ,max{X}]

(18)

We show that if there exists bh and b′h such that bh+l
2 <

b′h+l
2 ≤ max{X}, g(b′h, s) ≤ g(bh, s) holds for all s. In

other words, a smaller bh maximizes the g(bh, s) for all s as
long as bh ∈ [oh, 2max{X}− l].
(ii). If there exists bh and b′h such that b′h+l

2 > bh+l
2 >

max{X}, we can obtain g(b′h, s)− g(bh, s) as:

g(b′h, s)− g(bh, s) = log
(bh − s)2

(b′h − s)2
< 0

Algorithm 1 Crafting a Poisoned Image in CorruptEncoder
1: Input: A set of reference objects O, a set of background images B, a

set of triggers E , α, and β.
2: Output: A poisoned image.
3: Note: Ih and Iw respectively represent the height and width of an

image I .
4: o ← randomly sample a reference object in O
5: b ← randomly sample a background image in B
6: e ← trigger corresponding to the target class of o.
7: b ← RESCALEANDCROPBACKGROUND(b, o,α,β) ▷ Re-scale and

crop b if needed
8: (ox, oy) ← location of o in b
9: b[ox : ox + ow, oy : oy + oh] ← o ▷ Embed o to b

10: (ex, ey) ← location of e in b
11: b[ex : ex + ew, ey : ey + eh] ← e ▷ Embed e to b
12: Return b

Algorithm 2 RescaleAndCropBackground
1: Input: Background image b, reference object o, width ratio α, and

height ratio β.
2: Output: A re-scaled and cropped background image b′.
3: b′w ← ow · α
4: b′h ← oh · β
5: r = max(

b′h
bh

,
b′w
bw

) ▷ Get the re-scaling ratio if re-scaling is needed
6: if r > 1 then ▷ Scaling up b by ratio r
7: b ← RESCALE(b, r)
8: end if
9: b′ ← a random rectangle area with width b′w and height b′h in b

Table 5. Default target class of each target downstream task.

Target Downstream Task Default Target Class

ImageNet100-A Greater Swiss Mountain Dog

ImageNet100-B African Hunting Dog

Pets Havanese

Flowers Lotus

Table 6. The utility (%) of different attacks.

ImageNet-
100-A

ImageNet-
100-B Pets Flowers

No Attack (CA) 69.3 60.8 55.8 70.8
SSL-Backdoor (BA) 70.2 61.4 55.2 69.7

PoisonedEnocdr (BA) 70 61.3 55.2 69.9
CorruptEncoder (BA) 69.6 61.2 56.9 69.7

Therefore, a smaller bh also maximizes the g(bh, s) for all
s as long as bh ∈ (2max{X}− l,∞).
Combining (i) and (ii), we theoretically prove that g(bh, s)
monotonically decreases for all s ∈ X as bh increases. To
this end, b∗h = oh will maximize the marginal probability
p1(s)p2(s) for all s ∈ X and therefore maximize the p.

Table 7. Impact of the number of support reference images on
ASR of CorruptEncoder+. The total poisoning ratio is 0.5% and
the target downstream task is Pets. ASR (%) is reported.

CorruptEncoder
CorruptEncoder+

1 5 10

72.1 79.7 93.6 97.9

Table 8. Impact of the number of support poisoned images on
ASR of CorruptEncoder+. The total poisoning ratio is 0.5% and
the target downstream task is Pets. ASR (%) is reported.

CorruptEncoder
CorruptEncoder+

130 (λ = 1/4) 260 (λ = 2/3) 390 (λ = 3/2)

72.1 93.6 94.3 88.4

Table 9. Impact of δ on localized cropping. We observe a trade-off
between the utility and attack success rate as δ increases.

N/A 0.1 0.2 0.3 0.5

BA ASR BA ASR BA ASR BA ASR BA ASR

61.2 89.9 55.7 0.8 56.3 0.9 58.5 17.1 61 84.1

C. Datasets
By default, we use ImageNet100-A [24] and Concep-
tual Captions 0.5M [27] respectively for single-modal and
multi-modal pre-training, and we evaluate the pre-trained
image encoders on ImageNet100-B for linear classification.
When the downstream task is ImageNet100-A classification
(same as pre-training), we randomly pick 10% of images
from each class as the downstream training dataset, follow-
ing SSL-Backdoor [25]. Other downstream datasets include
Oxford-IIIT Pets [21] and Oxford 102 Flowers [20], whose
train/test splits are the same as [3, 6]. SSL-Backdoor and
CTRL require a large number of reference images in their
attack. Since the dataset of a downstream task (Pets, Flow-
ers, Caltech-101) may not contain enough reference images,
we duplicate them multiple times when constructing poi-
soned images for SSL-Backdoor and CTRL. For each refer-
ence object used by our CorruptEncoder, we manually an-
notate its segmentation mask in the reference image using
the open-source labeling tool called labelme3.

D. CL Algorithms
The CL algorithms include MoCo-v2 [5], SimCLR [3],
MSF [13] and SwAV [2] for single-modal CL and CLIP [23]
for multi-modal CL. We follow the original implementation

3https://github.com/wkentaro/labelme

����� ������ ��������

��

��

��
�
�
�
�
�
�
��
��

�

���� ���� ����
����

����

����

��

���

(a) Trigger type

10 20 30 40 50
Trigger Size

0

20

40

60

80

100

P
er
ce
nt

(%
)

CA

BA

ASR

(b) Trigger size

30 40 50 60 70

ACC (%)

0

20

40

60

80

100

A
S
R
(%

)

w/o RC

RC (default)

RC (0.2,0.4)

RC (0.4,0.6)

RC (0.6,0.8)

(c) Cropping mechanism

Figure 10. (a) Impact of the trigger type on CorruptEncoder. (b) Impact of the trigger size on CorruptEncoder. (c) Impact of the default
cropping mechanism on CorruptEncoder. RC indicates random cropping with different scales.

of each CL algorithm, including the data augmentation op-
erations and hyper-parameters:

MoCo-v2: Following SSL-Backdoor [25], we use this
code implementation of MoCo-v24. We adopt the same pre-
training settings as their work. In particular, we use the
SGD optimizer with an initial learning rate of 0.6 and pre-
train an encoder for 200 epochs with a batch size of 256 on
2 NVIDIA RTX6000 GPUs.

SimCLR: We use this pytorch implementation5 of Sim-
CLR. Because SimCLR requires a large batch size (> 1k) to
obtain a desirable performance on ImageNet, we pre-train
each encoder for 300 epochs with an initial learning rate of
1.2 and a batch size of 1024 on 4 NVIDIA RTX6000 GPUs.

MSF: We follow the official implementation6 of MSF.
Specifically, we pre-train each encoder for 200 epochs with
a batch size of 256 on 4 RTX6000 GPUs.

SwAV: We follow the official implementation7 of SwAV
(including data augmentations, optimizer, etc.). We pre-
train each encoder for 200 epochs with a total batch size
of 256 on 4 NVIDIA RTX6000 GPUs.

CLIP: Following Carlini and Terzis [1], we use the official
implementation8 of CLIP for multi-modal CL. In particu-
lar, we pre-train an image encoder (ResNet50) and a text
encoder (ViT-B-32) for 30 epochs using a batch size of 128
image-text pairs. Since we pre-train our encoders on a sub-
set of Conceptual Captions Dataset, the pre-training takes
∼ 14 hours on a single RTX6000 GPU.

E. Training Linear Downstream Classifiers
Following previous works [3, 8, 13], to train a linear down-
stream classifier on a downstream task, we follow the same

4https://github.com/SsnL/moco_align_uniform
5https://github.com/AndrewAtanov/simclr-pytorch
6https://github.com/UMBCvision/MSF
7https://github.com/facebookresearch/swav/blob/

main/main_swav.py
8https://github.com/mlfoundations/open_clip

A photo of a dog

(a) Carlini & Terzis (b) CorruptEncoder

A photo of a dog A photo of a dog

Maximize
Feature

Similarity

Maximize
Feature

Similarity

Maximize
Feature

Similarity

Figure 11. Poisoned image-text pairs in [1] vs. our
CorruptEncoder for multi-modal CL, where the target class is dog.

linear evaluation protocol used by each CL algorithm. For
multi-modal CL, we train a downstream classifier using the
same linear evaluation protocol as MoCo-v2.

F. CorruptEncoder for Multi-modal CL

Carlini and Terzis [1] proposed a DPBA to multi-modal CL.
To craft poisoned image-text pairs, they embed the trigger
into some images and create the corresponding texts fol-
lowing some text prompts that include the target class name
(e.g., “a photo of dog”), as illustrated in Figure 11. This
attack achieves limited success rates when the pre-training
dataset only includes few image-text pairs whose images in-
clude objects from the target class and whose texts include
the target class name, because CL cannot semantically as-
sociate the target class name with objects in the target class.
Our CorruptEncoder for multi-modal CL addresses such
limitation by extending the key idea used to attack single-
modal CL.

F.1. Crafting Poisoned Image-text Pairs

We denote by fi and fr the feature vectors produced by
the image encoder for an image embedded with trigger eti
and a reference image from target class yti. Moreover, we
denote by ft the feature produced by the text encoder for a
text prompt including the name of target class yti. Our key
idea is to craft poisoned image-text pairs such that 1) fi is
similar to ft, and 2) ft is similar to fr. Therefore, fi and fr

Target class

Ours

SSL-
Backdoor

Poisoned
Testing
Image

African
Huting Dog

Figure 12. Comparing the attention maps of poisoned testing images when using classifiers built based on backdoored encoders from
SSL-Backdoor [25] and CorruptEncoder. We use Grad-CAM [26] to visualize the attention map, which shows the most influential parts of
an input that result in the classifier’s output.

Attention
map

Testing
Image

Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned

Figure 13. Comparing the attention maps of clean and poisoned testing images when using the classifier built based on our CorruptEncoder.

KomondorSki Mask LorikeetRottweiler

Sign Havanese LotusSwiss Mountain Dog

Figure 14. Visual illustrations of reference objects from different target classes.

are similar, making our attack successful.

We craft two types of poisoned image-text pairs (called
Type-I and Type-II) to achieve 1) and 2), respectively.
Specifically, to achieve 1), we craft a Type-I poisoned
image-text pair by embedding a randomly picked trigger
eti ∈ E into a randomly picked background image b ∈ B
and creating a text prompt including the name of the target
class yti, where the location of the trigger in the background
image is random. To achieve 2), we craft a Type-II poisoned

image-text pair by embedding a randomly picked reference
object from a target class yti into a background image and
creating a text prompt like Type-I. The background image
may be re-scaled (or cropped) if it is too small (or large) to
include the reference object. A text prompt could be like “a
photo of <target class name>”. In our experiments, we use
the text prompts proposed by [1], which are publicly avail-
able. Given N total poisoned image-text pairs, we generate
N
2 Type-I and N

2 Type-II ones. Note that Carlini and Terzis

Table 10. Attacks to multi-modal CL. The pre-training dataset
is Conceptual Captions [27] and the target downstream task is
ImageNet100-B. CA, BA and ASR are measured in percentage
(%).

Target Class
No Attack Carlini and Terzis CorruptEncoder

CA ASR BA ASR BA ASR

Street Sign

48.4

1 48.3 94 49 97.7
Ski Mask 1.4 48.5 96 48.6 96.6
Rottweiler 1.7 48.6 0 48.9 57
Komondor 0.3 48.9 0 48.8 60.9
Lorikeet 1.9 47.7 0.1 48.4 89

Table 11. CorruptEncoder can simultaneously attack all the down-
stream tasks that contain the target class (e.g., Hunting Dog).

Task-1 Task-2 Task-3

CA BA ASR CA BA ASR CA BA ASR

60.8 61.2 89.9 63.0 63.3 92.7 64.5 64.2 90.4

only use N Type-I poisoned image-text pairs in their attack.

F.2. Experimental Setup

When comparing CorruptEncoder with the existing at-
tack [1] to multi-modal CL, we use a subset of 0.5M in-
puts in the Conceptual Captions dataset (CC) [27] as a pre-
training dataset and use CLIP [23] as the pre-training algo-
rithm. We only inject 0.1% (i.e., 500) of poisoned image-
text pairs since multi-modal CL is easier to attack than
single-modal CL because an attack to multi-modal CL can
exploit both images and texts. Moreover, we use a 16× 16
trigger following [1] for a fair comparison.

F.3. Experimental Results

Table 10 compares our attack with Carlini and Terzis [1],
the state-of-the-art backdoor attack to multi-modal CL. Our
results show that both attacks maintain the utility of the en-
coder. However, CorruptEncoder achieves slightly or much
higher ASRs than Carlini and Terzis. Specifically, for tar-
get classes Rottweiler, Komondor, and Lorikeet, their attack
achieves ASRs of around 0, while CorruptEncoder achieves
large ASRs. This is because the pre-training dataset in-
cludes few image-text pairs related to these target classes.
As a result, Carlini and Terzis can not semantically asso-
ciate the target class name with objects in the target class,
leading to poor attack performance.

G. Potential Limitations
Our attack relies on some reference images/objects being
correctly classified by the downstream classifier. Since we

Table 12. ASRs (%) of CorruptEncoder with different pre-training
datasets. Following our default setting, the target downstream task
is ImageNet100-B.

Another-ImageNet100 MSCOCO SUN397

BA ASR BA ASR BA ASR

MoCo-v2 52.1 96.9 56.9 93.4 48.4 93.2
MSF 54.1 91.0 58.0 93.5 49.6 99.8

Table 13. Detection performance of PatchSearch. TPR (%) indi-
cates the fraction of poisoned pre-training images filtered out by
PatchSearch. ASR (%) indicates the original attack performance.

SSL-Backdoor Ours (Patch) Ours (Blended)

ASR TPR ASR TPR ASR TPR

14.3 83.7 89.9 37.1 71.7 2.7

consider the worst-case attack where the attacker only has
a few reference objects (e.g., 3), our attack may fail if these
reference objects mainly contain common features shared
by different classes. The proposed CorruptEncoder+ uses
more reference images (i.e., support reference images) to
improve the attack performance. We believe it’s an inter-
esting future work to explore what makes a good reference
image/object.

H. Additional Results

H.1. The advantage of attacking a target class

Our attack aims to backdoor a pre-trained encoder such that
any downstream classifier built based on the backdoored
encoder will predict trigger-embedded images as the target
class as long as the downstream task (e.g., arbitrary animal
classification) contains the target class (e.g., dog). Different
from backdoor attacks to supervised learning, an attacker
does not need to know classes in the downstream task. In
our threat model, the attacker only needs to randomly pick a
target class and obtain a few (e.g., 3) reference images from
it. After poisoning the pre-training dataset, the attacker can
compromise any downstream task that contains the target
class. In our experiments, we evaluate one downstream
task for each choice of target class following the previous
works. To better illustrate our idea, we randomly sample
three downstream tasks containing the target class from Im-
ageNet. The encoder compromised by our attack results in
ASRs of 89.9%, 91.6%, and 90.1% for them, as shown in
Table 11. In other words, our attack can simultaneously at-
tack all three downstream tasks.

H.2. More Attack Results on Different Pre-training
Datasets

Our attack is generalizable to different pre-training settings.
In Figures 5(a) and 5(c) of our paper, we show that Cor-
ruptEncoder is agnostic to different sizes of pre-training
datasets and CL algorithms. In Table 12, we further evalu-
ate CorruptEncoder with diverse pre-training datasets, such
as a non-object-centric dataset (MSCOCO) and a domain-
specific dataset (SUN397). Our results show that different
pre-training datasets have small impacts on the attack per-
formance, while they produce pre-trained encoders with dif-
ferent clean utilities.

H.3. Defense Results against PatchSearch

PatchSearch [29] is the state-of-the-art defense to detect
patch-based backdoor attacks. The key idea is to check
if each sample in the pre-training dataset contains a small
patch that behaves similarly to the trigger. In particu-
lar, it searches the whole pre-training dataset for trigger-
embedded samples and removes them from the set.

Table 13 compares the detection performance of Patch-
Search in filtering out poisoned pre-training images of dif-
ferent attacks. We observe that while our attack achieves
a much larger ASR than SSL-Backdoor, the poisoned im-
ages are not easy to detect. In particular, only 37.1% of
poisoned pre-training images are detected by PatchSearch.
The reason is that the irrelevant backgrounds of our attack
introduce diverse features to the trigger-embedded patches.

Moreover, we found that an adaptive attacker can extend
CorruptEncdoer to bypass the PatchSearch. Instead of using
a patch trigger, we embed a large but relatively invisible
trigger (e.g., Blended Attack [4]) within the rectangle re-
gion excluding the reference object. From Table 13, only
2.7% (17 out 650) of poisoned images are detected for this
advanced attack. We believe it’s an interesting future work
to develop a stronger defense that can defend pre-trained
encoders against our attack for all types of triggers.

