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We give the structure details of some components in De-
Match, and provide more experimental results to show the
superior performance and promising properties, especially
the piecewise smoothness. We also conduct further analysis
to determine the structure of DeMatch.

1. Structure Details

In this section, we give structure details of the initial mod-
ule, the graph attention network G(-,-), and the inlier pre-
dictor, all of them are not presented in the main paper.

1.1. Initial Module

Once getting the putative motion vectors {m; =
(x;,d;)|i = 1,...,N}, we try to map them into high di-
mensional sapce as F = {f,} with initial module. The
dimensions of coordinates X = {x;} and displacements
D = {d;} are upgraded, respectively, then the results are
summed together to achieve positional embedding [7]. The
initial module totally consists of 1 x 1 convlutional layers
(1 x 1 Conv), batch normalization [3] (Batch Norm) and
Relu activation function [2] (ReLU). Details are shown in
Figure 1.
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Figure 1. Structure details of the initial module.

1.2. Graph Attention Network
Graph attention network is performed in the paper with:

Z =G(B.F) = B+ FEN(B|A(B,F)), (I
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where A(B, F') is the standard attention mechanism:
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The structure of G(B, F') is shown in Figure 2, where Q,
K, V indicate the query, key and value in attention mecha-
nism, respectively. Note that we perform multi-head atten-
tion practically for A(-, -) in Eq. (2) as the same as [7]. And
the function FEN(-) (i.e. feed-forward network) consists of
1 x 1 convolutional layers, batch normalization, and Relu
activation function.

A(B, F) = Softmax ( (WoB ) Wy F. (2)
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Figure 2. Structure details of the graph attention network.

1.3. Inlier Predictor

Similar to many other methods [10, 11], inlier predictor
is feeded with the difference of motion vector features
HHp_tp = {“1f. —*F.} and outputs the predicted
logits fo = {%i} for inliers/outliers classification. Except
for the operations that the initial module has used, the pre-
dictor contains context normalization [9] (Context Norm) to
identify inliers better. Details are shown in Figure 3.
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Figure 3. Structure details of the inlier predictor.



dR: 1.49, dt: 14.16 dR: 1.23, dt: 10.06 dR: 1.6, dt: 16.85 dR: 1.09, dt: 3.96

OANet 7 LMCNet ConvMatch DeMatch (Ours)

Figure 4. Qualitative illustration of outlier rejection and relative pose estimation. False matches are marked with red while correct matches
are marked with blue. The relative pose estimation results (error of rotation and translation) are provided in the top left corner.



2. Experiments
2.1. Relative Pose Estimation

We show more visualization results (including OANet [10],
LMCNet [4], ConvMatch [11] and DeMatch) of outlier re-
jection and relative pose estimation for outdoor scenes (the
1-st row to the 5-th row) and indoor scenes (the 6-th row to
the 11-th row) in Figure 4. Note that ConvMatch seems to
perform worse than others in some indoor scenes (the 6-th
row to the 8-th row), because the local filters in ConvMatch
over-smooth the discontinuities in the case of large scene
disparities, resulting in wrong matches. However, DeMatch
can handle the problem of piecewise smoothness naturally
with the decomposition of the motion field, leading to better
results.

2.2. Robustness Test

We try to verify the robustness of the proposed approach
in challenging scenarios. In fact, YFCCI100M [6] and
SUNB3D [8] contain many difficult cases with less than 10%
of inliers. Thus to further demonstrate DeMatch’s excel-
lent robustness, we reduce the inlier ratio from 10% to only
2%, repeating the outdoor pose estimation experiment with
these different inlier ratios. Results are shown in Figure 5.
The models of DeMatch and other algorithms (OANet [10],
CLNet [12], MS?2DGNet [1] and ConvMatch [11]) trained
on YFCC100M with SIFT [5] are used for evaluation. Al-
though the accuracy of all methods decreases as the inlier
ratio declines, the proposed DeMatch is less volatile and
consistently performs better than others, displaying better
robustness.
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Figure 5. Robustness test. AUCQ@5° with the weighted eight-point
algorithm is reported.

2.3. Piecewise Smoothness Property

We have demonstrated the piecewise smoothness property
of DeMatch in the paper. We will provide more visualiza-
tion results here in Figure 6. The first column shows the
correspondence clusters, while the second column shows

the motion clusters. Each cluster is highly consistent and
subordinates to a particular motion pattern. We draw the
top-4 clusters with the number of correspondences in dif-
ferent colors for better visualization, where the clusters
with less than 5 correspondences are deemed as meaning-
less noise. The third column shows the highly smooth
sub-fields that are formed by corresponding clusters on the
“low-frequency” basis. In this way, we decompose the mo-
tion field into several sub-fields, constraining the smooth-
ness of sub-fields respectively instead of smoothening the
whole motion field directly. Therefore, piecewise smooth-
ness can be guaranteed naturally, and discontinuities at the
edge of different sub-fields can be maintained correctly. As
shown in the 6-th to the 8-th row of Figure 4, DeMatch han-
dles the problem of piecewise smoothness well. Note that
the correspondences and clusters in Figure 6 are predicted
totally by DeMatch, hence wrong matches may exist in the
visualization. And in the 5-th to the 7-th rows, significant
clusters are very limited for the simple scenes and small
transformations, so that original motion field is decomposed
into only a few (less than 4) sub-fields.

Furthermore, we visualize the effect of sub-fields on the
final performance in Figure 7. As the clusters of motion
vectors, i.e., sub-fields, are progressively removed, the er-
rors in rotation (dR) and translation (dt) become bigger and
bigger. This shows the great influence of sub-fields on the
performance of pose estimation.

2.4. Parameters of Network Structure

In the paper, we have chosen the number of layers L = 5
and the number of motion patterns K = 48 as default. Al-
though the growth of L leads to better performance, the
high computational usage limits a large L, and L = 5 is a
good performance and cost balance. But for K, the rule that
bigger is better is not suitable. As K increases, more low-
frequency information of the motion field F is retained, and
the new field constructed by K sub-fields {F*} becomes
closer to the real clean field 7. However, when K is larger
than a certain value, some high-frequency noise is also re-
tained, which can negatively affect the smoothness of the
new field and result in worse performance. The experimen-
tal results in the paper also demonstrate this concept. Thus,
we choose a proper K = 48 which is not too small or too
large. Furthermore, we attempt different numbers of times

Table 1. Parameter settings. The metric is AUCQ@Q10° with the
weighted eight-point algorithm. Note that one of the parameters is
fixed while another changes.

Metric a=1 a=2 a=3 £=2 B=4 5=6
AUCQ10° | 4895 52.67 5145 | 49.15 52.67 5295
Flops (G) 1.987 2346 2.706 | 2.267 2.346 2.426
Params M) | 5.027 5.853 6.679 | 4200 5.853 7.505




Figure 6. Illustration for piecewise smoothness property. Clusters are marked with different colors to represent different motion patterns,
and the sub-field is formed by the cluster that is painted with a similar color. Zoom in for better visualization.
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Figure 7. The effect of sub-fields on the final performance. Motion clusters that form smooth sub-fields are removed gradually. The errors
of rotation and translation are shown in the top-left corner. Zoom in for better visualization.

the decomposition and the global enhancement are reused
(noted as « and 3, respectively) to find a better network
structure of DeMatch. Results are shown in Table 1, and
we choose o = 2 and 8 = 4 finally to achieve unsurpassed
performance while reducing computational usage.
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