
A. Additional Qualitative Results
We provide additional visualizations of the extracted eigen-
vectors for both the COCO and Cityscapes datasets in Fig-
ures 8 and 9. These visualizations follow the same method-
ology as in Figures 5 and 6, where eigenvectors U are ren-
dered in descending order in groups of three. Each channel
of the RGB image corresponds to the value of a particular
eigenvector at that coordinate.

B. Per-Image Experimental Details
B.1. Data Preprocessing

For models besides Stable Diffusion [53], and Masked Au-
toencoder (MAE) [27] image inputs are resized to have a
short dimension of 448 pixels. This requires change to the
resolution of the learned positional embeddings, which we
do through bicubic interpolation, similar to MaskCLIP [77].
In the case of Stable Diffusion, we instead resize images
to 512x512 to match the input dimensions of the original
model. For MAE, we resize images to 224x224, then up-
sample the internal query and key matrices to match the
spatial resolution of CLIP and DINO.

B.2. Optimization

We optimize features with Adam [33], with a learning rate
of 3e-4 or 1e-3, and default PyTorch [50] betas (0.9, 0.999).
We take a number of gradient steps to convergence that de-
pends on the model (1000 for CLIP, 2000 for others), but
we typically find that 1000 steps is sufficient. Timing infor-
mation for our method is available in Table 6.

Unlike other models, where there is only a single set of
attention matrices per image, the sampling of t in the for-
ward pass of Stable Diffusion introduces more noise and
significantly more computation into the optimization. To
address this, we cache attention matrices in a buffer of 5
at a time, where the chance to sample a new set of attention
matrices is 1/4, and the oldest set in the buffer is replaced by
this sample. We also accumulate gradients for 20 backward
passes before taking an optimizer step.

B.3. Baselines

To extract regions from TokenCut [71] and MaskCut [70], a
single affinity matrix is required. One choice is an affinity
matrix constructed from features of the final layer, which is
the original proposed matrix for these methods. Another is
the final layer’s attention matrix. A third alternative is to
compute an average over all attention matrices across lay-
ers, so as to better compare to our method. We found the
third option often led to an ill-conditioned matrix, which
could not be solved.

Consequently, we present results for the first two
choices. For methods except TokenCut, we find best results

Model Runtime (seconds)
Stable Diffusion 1.4 (w/ buffer) [53] 67
Stable Diffusion 1.4 (w/o buffer) [53] 155
DINO ViT-S/16 [8] 40
MAE/CLIP ViT-B/16 [51] 54

Table 6. Computation time across models. We benchmark re-
gion computation time for 1000 optimization steps using different
models on an NVIDIA A40. 1000 steps are often not required for
good results, thus it may be possible to significantly accelerate the
pipeline.

with m = 15 eigenvectors. For TokenCut we found the
performance with m = 15 to be subpar, so we use m = 8
instead. Quantitative results are available in Table 1. Qual-
itative results comparing decoding methods can be seen in
Figure 10. See Figure 3 for comparison between regions
extracted from different models.

B.4. Computational Cost

Table 6 shows the computational cost of running our
method, benchmarked on an NVIDIA A40. The extremely
long computation time for Stable Diffusion is due to many
evaluations of the model during optimization, instead of
simply caching the attention matrices from a single forward
pass.

C. Full-Dataset Experimental Details

C.1. Data Preprocessing

All experiments take place on COCO-Stuff [5, 40] and
Cityscapes [16]. We follow the same preprocessing proto-
col as adopted in PiCIE [14] and STEGO [24]: images are
first resized so the minor edge is 320px and then cropped in
the center to produce square images.

C.2. Optimization

In the per-image setting we choose each head to be an in-
dependent affinity graph, but that leads to extremely expen-
sive experiments at the full-dataset level. To control this
expense, we experiment with a few alternatives: consider-
ing each head independently and sampling random layers
and heads per iteration of optimization, or concatenating the
features for each head into one large vector, which reduces
the number of graphs by a factor of 8. The second ultimately
led to better results. Due to prohibitive memory costs, we
also only consider attention layers with resolutions of 32x32
or coarser. This avoids the large graphs constructed by lay-
ers with 64x64 resolution. Due to the prohibitive cost asso-
ciated with optimizing one set of features per image in the
dataset, we restrict our dataset-level clustering to the vali-
dation set only.



Im
g

E
ig

s
(Q

-K
G

ra
ph

)
E

ig
s

(V
-V

G
ra

ph
)

Im
g

E
ig

s
(Q

-K
G

ra
ph

)
E

ig
s

(V
-V

G
ra

ph
)

Im
g

E
ig

s
(Q

-K
G

ra
ph

)
E

ig
s

(V
-V

G
ra

ph
)

Im
g

E
ig

s
(Q

-K
G

ra
ph

)
E

ig
s

(V
-V

G
ra

ph
)

Figure 8. More examples of extracted eigenvectors on COCO for both graph choices. We visualize selected components of Xortho,
sorted by decreasing eigenvalue. Three eigenvectors at a time are rendered as RGB images.



Im
g

E
ig

s
(Q

-K
G

ra
ph

)
E

ig
s

(V
-V

G
ra

ph
)

Im
g

E
ig

s
(Q

-K
G

ra
ph

)
E

ig
s

(V
-V

G
ra

ph
)

Im
g

E
ig

s
(Q

-K
G

ra
ph

)
E

ig
s

(V
-V

G
ra

ph
)

Im
g

E
ig

s
(Q

-K
G

ra
ph

)
E

ig
s

(V
-V

G
ra

ph
)

Figure 9. More examples of extracted eigenvectors on Cityscapes for both graph choices. We visualize selected components of Xortho,
sorted by decreasing eigenvalue. Three eigenvectors at a time are rendered as RGB images.



Figure 10. Examples of different segmentation methods on
PASCAL VOC [21]. All methods besides GroupViT [73] use
DINO [8] features or attention. Ours can generate diversified
regions while maintaining accurate object borders. In contrast,
GroupViT [8] tends to generate a noisy boundary, while Mask-
Cut [70] can miss subtle boundaries.

C.3. Evaluation

Unsupervised semantic segmentation. We consider
Xortho as features for our method. We also compare with
several baseline methods by collecting backbone features
from a number of different models: STEGO, DINO and Sta-
ble Diffusion. For Stable Diffusion we choose the most se-
mantic features in the model, as measured by semantic cor-
respondence performance in prior work [63]. For DINO we
take features at the last layer, like prior work [24, 70, 71].
For STEGO, we use output just before the linear head that
projects to the number of clusters.

After obtaining features, we cluster with K = 27, the
number of ground truth categories in both datasets, for K-
Means over Xortho. We report results with mIoU and com-
pare to other methods in Table 3.

X-Y coordinate regression. After extracting features, we
use a random sample of 80% of the features to learn a linear
regression model onto the X-Y coordinates of a 32 x 32
grid, and check performance on the remaining 20%. For
methods where the features are of a different resolution, we
resize bilinearly.

D. More Applications of Per-Image Regions

D.1. Adapting CLIP for Open-Vocabulary Seman-
tic Segmentation

As a more interesting case-study than oracle decoding, we
assess our regions for zero-shot semantic segmentation on
PASCAL VOC [21]. In order to form class decisions, we
follow insights from GroupViT [73] and MaskCLIP [77].
First we compute regions on top of CLIP ViT-B/16, then
we take the final value vectors from the last attention layer
as pixel-wise features, similar to MaskCLIP. We compute
region-wise features by averaging pixel-wise features over
the regions they correspond to, then compute cosine similar-

Figure 11. Examples for different methods on zero-shot se-
mantic segmentation. Notice the tendency of GroupViT [73]
and MaskCLIP [77] to break up objects, and the eagerness of
MaskCLIP to cover the image. On the airplane image we perform
slightly worse than GroupViT but our regions have more spatially
coherent structures. On the boat image our method has better per-
formance and can even separate water and sky, though the gap
between their pixel values is almost imperceptible.

Method Segmentation-specific? Model mIoU
GroupViT [73] Yes modified ViT-S/16 0.53
MaskCLIP [77] No ViT-B/16 0.25
Ours No ViT-B/16 0.50

Table 7. Zero-shot segmentation on PASCAL VOC [21]. Our
method is stronger than the MaskCLIP baseline, and competitive
with GroupViT, whose architecture is tailored to segmentation.

ities between these region-wise features and the text embed-
dings of CLIP, where per-class text embeddings are com-
puted by an average over many different prompts like “a
photo of a {class name}, a picture of a {class name}, ...”,
as is done in GroupViT. Finally we threshold these simi-
larities by a fixed number (0.7), and set all regions to their
most similar class, where regions with no similarity greater
than the threshold are assigned background. We compare
to MaskCLIP [77], a training-free approach, as well as
GroupViT [73], which proposes modifications to the orig-
inal CLIP architecture in order to better suit segmentation.

We see in Table 7 that, even without a segmentation-
specific training objective, we can achieve competitive per-
formance on PASCAL VOC [21], and our region-extraction
pipeline aids in segmentation on top of CLIP [51]. We
emphasize that this is possible without any segmentation-
specific objectives or additional training.

Our regions are often contiguous and large in size, while
GroupViT’s regions contain holes. As a result, the errors
that CLIP makes in localizing certain classes may be mag-
nified by our regions. This can be seen in per-class IoU



Figure 12. Per-class mIoUs on PASCAL VOC. Errors are pro-
nounced in a few particular classes, like “boat”, “potted plant”,
and “dining table,” which are primarily due to localization issues
with CLIP.

Figure 13. Examples of segmentation failures.From the regions
we see that most object are correctly segmented and classified, but
CLIP fails on the background. From left to right, water is classified
as “boat,” hardwood floor is classified as “dining table,” runway
grass is classified as “cow,” forest foliage is classified as “potted
plant,” and bedding is classified as “sofa.” This persists across
threshold values, as the CLIP similarities are very high. Refining
CLIP’s localization ability can close much of the gap to oracle
decoding.

scores in Figure 12, and examples of CLIP’s failure to lo-
calize in Figure 13. Crucially, it appears that CLIP does a
poor job localizing particular classes, associating “boat” to
any water or beach in the image, “potted plant” and “cow”
to ground cover, and “person” to all sorts of human-built ob-
jects. Fixing these localization errors in CLIP is out of the
scope of our contributions, but could yield improvements to
match segmentation-specific methods.

D.2. Unsupervised Instance Segmentation

As an additional proof-of-concept, we run experiments on
a more difficult task, unsupervised instance segmentation,
which requires simultaneously generating object proposals
and segmenting salient objects. To benchmark our method,

we use the standard COCO 2017 [40] validation split, and
follow prior work [70] to report results on both instance seg-
mentation and object detection metrics in a class-agnostic
setting. Due to the difficulty of generating instance propos-
als in a diverse image distribution, recent attempts [69, 71]
design heuristic decoding strategies based on the struc-
ture of a particular model’s features, e.g., the final layer of
DINO [8], in order to generate region proposals.

However, we hypothesize that, if the features are infor-
mative enough, a simple clustering strategy and generic
scoring function should suffice for high-quality instance
segmentation. In our implementation, we use K-Means
to generate region proposals, and silhouette scores to rank
those proposals.

We start by generating initial region proposals by cluster-
ing with K-Means on top of the dense features we extract,
with K ranging from 2 to 10. To further expand our pool of
proposals, we use agglomerative clustering to hierarchically
merge spatially adjacent regions with ward linkage.

Naively, we can treat each instance proposal as a binary
clustering problem with the foreground and background
each as their own cluster, and directly use silhouette scores
to rank proposals. However, instances usually take up a rel-
atively small portion of an image making the binary clus-
tering extremely imbalanced, which significantly harms the
scores and ranking.

To this end, instead of treating the complement of fore-
ground masks as background, we subsample the back-
ground pixels to create a balanced subset by only preserving
the background pixels that are close to the foreground pix-
els in feature space. We also adopt standard post-processing
steps to remove duplicate and extreme-sized segments be-
fore producing the final output. Finally, since the silhouette
score is in the range [−1, 1], we can use 0 as a threshold to
remove low-quality proposals.

We follow the above procedure on top of the features
produced by optimizing Eqn. 4 over Stable Diffusion’s at-
tention layers. We report our results and compare to the
current state-of-the-art region proposal methods in Table 8.

Due to the approximation error in binarizing the affin-
ity matrix for clustering, both TokenCut and MaskCut
have trouble yielding diversified samples. By contrast, our
learned features contain richer information that allows us
to adopt a generic instance grouping pipeline without any
post-processing on the features. As we see in Table 8, this
leads us to generate high-quality diversified proposals with
better recall in both instance segmentation and object de-
tection metrics, while maintaining comparable precision to
prior methods. Qualitative results are available in Figure 14.

E. Code Sources
All experiments are implemented in Python with Py-
Torch [50]. For Stable Diffusion [53], we use Hugging-



Figure 14. Examples of different methods on instance segmen-
tation. As described by the original authors, TokenCut [71] can
only generate a single object proposal, and MaskCut [70] is limited
as well. Our method shows better localization results and scales to
many instances.

Method #Masks AP box
50 AP box ARbox

100 APmask
50 APmask ARmask

100

TokenCut [71] 1 5.2 2.6 5.0 4.9 2.0 4.4
TokenCut [71] 3 4.7 1.7 8.1 3.6 1.2 6.9
MaskCut [70] 3 6.0 2.9 8.1 4.9 2.2 6.9
Ours 13 4.0 1.9 11.2 4.0 1.5 8.2

Table 8. Results of instance segmentation on COCO-val-
2017 [40]. Our learned pixel-wise features, with a simple and
generic instance segmentation decoding pipeline, significantly
outperform baselines in recall, in both object detection and in-
stance segmentation. On the other hand, despite generating many
more proposals per image, our method still maintains comparable
precision.

Face Diffusers [68]. For baselines, we use official numbers,
implementations, and model weights, except in the case of
MaskCLIP [77], where we reimplement the method due to
difficulty in obtaining satisfactory performance.


