Decoupled Pseudo-labeling for Semi-Supervised Monocular 3D Object Detection
(Appendix)

1. Geometric Relationship in Monocular 3D
Object Detection

In contrast to 2D object detection, Monocular 3D Object
Detection (M30D) involves numerous geometric priors be-
tween 2D and 3D space, with the primary one being the pin-
hole model that describes the correspondence between the
location of 3D points and 2D points. With the pinhole cam-
era model, the mapping of a 3D point P with ¢ = (z,y, 2)
location under the LiDAR coordinate system and its corre-
sponding 2D location ¢! = (u,v) within image can be de-
scribed as:

zuv 1T =K-[R|T]- [z y 2" (1)

where matrix K is the camera intrinsic matrix. z is the
depth value at point P, R and T is the rotation and trans-
formation matrix of the camera extrinsic matrix. In this
equation, the camera extrinsic matrix [R|T] is responsible
for the transformation between the LiDAR coordinate sys-
tem and the camera coordinate system. The camera intrinsic
matrix K is used to transform the point from the camera co-
ordinate to the image plane.

2. Extended Details of Homography-based
Pseudo-label Mining

The complete procedure of the proposed Homography-
based Pseudo-label Mining(HPM) algorithm is summarized
in Algorithm 1. Several key components of this algorithm
are explained below.

Model Prediction. Formally, the outputs of the teacher
model F' for a unlabeled image I contains the 2D and 3D
attributes for each predicted object:

[Cls, BBox)ap, [Points, Depth, Size, Ori|sp = F(I").
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where Cls is the classification confidence, BBox is the 2D
bounding box of the object. Points is the predicted pro-
jected points of the 3D bounding box in the image plane.
In our main paper, we predict 10 points of the 3D box in
total following MonoFlex[12], which includes eight corner
points and top and bottom center points. Depth refers to
the depth value of the bottom center point. Size represents

the 3D size and contains the length, width, and height of the
object. Ori represents the orientation of the object.

2D-3D Transformation.  Homography-based Pseudo-
label Mining involves the geometric transformation of the
pseudo-labels between 2D and 3D space. Specifically, we
take the four bottom corner points plus the bottom center
point as the candidate points for each object to estimate
the homography transformation. Specifically, the location
of these candidate points in the image plane is directly ob-
tained via Eq.2. To estimate the BEV coordinate of these
points, the bottom center point is first transformed from the
image plane to the camera coordinate system as:

Peenter = K71 : [ZU, ZU, Z] 3)

Then, we apply the local transformation to the P, with the
orientation and 3D size(length, width, and height) predic-
tion in Eq.2 to get the camera coordinates P.yyne,- Of the
candidate corner points. Such local transformation involves
simply translation and rotation. Finally, the inversion of
camera extrinsic matrix [R|T] is further applied to obtain
their BEV coordinates.

B.=[R|T]!-P “4)

Where P. refers to the camera coordinates of bottom corner
points and bottom center point, and B. denotes their corre-
sponding BEV coordinates.

Note that the 3D BEV coordinate of these candidate
points is not directly transformed by their 2D location in
the image plane, instead, they are estimated based on the
model’s 3D attributes prediction such as depth, orientation,
etc. Therefore, the homography matrix solved from these
coordinates via DLT[8] is not a trivial solution.

Feasibility of Flat Ground Assumption. We check
the feasibility of the flat ground assumption used in the
homography-based pseudo-label mining algorithm. Actu-
ally, the KITTI dataset does exhibit some micro-unevenness
in the ground, which also leads to minor localization er-
rors in ground truth objects when utilizing the homogra-
phy solved from the ground truth bounding box as shown in
Tab.4. However, these errors are minimal when compared
to the localization errors in pseudo-labels caused by inac-
curate depth. With this obvious gap between the ground



Algorithm 1: DLT indicates solving the homography matrix by Direct Linear Transform[8]. ImageCoord.
and BEVCoord. refers to the operation to obtain the coordinates of the point in image plane and BEV plane.
ImageCoord. relies on Eq.2 and BEVCoord. relies on Eq.3,Eq.4. ’all’ indicates all candidate points(5 points

each object), *bc’ indicates the bottom center point.

Input :

m?: Initial set of pseudo-labels generated by uncertainty filtering;

0;,: Localization error threshold;

p = {p1,....,pn}: N candidate predicted 3D bounding box

Output:
m3P: The final pseudo-labels for 3D attributes

I: fort=1,---  tyae do

2:
3:
4 M « DLT(C%, C%);
5. mb+— mt1;
6: forj=1,---,Ndo
7:
transformation
8:
9: if €§- < 0y, then
10: m! < add b; into m?;
11: end if
12:  end for
13:  if m* = m?!~! then
14: break;
15:  end if
16: end for

17: m3P «— mt
18: return m>P

C:’} = ImageCoorday (m'~1); // Image coordinates of all pseudo-labels’ bottom corner and center points
ng = BEVCoordau(mt_l); // BEV coordinates of all pseudo-labels’ bottom corner and center points

é" « M[ImageCoordy.(p;), 1]7; // Obtain BEV coordinates of the bottom center points via homography

¢ + |[BEVCoordypc(p;) — ¢®||2; // Compute loc error of bottom center point

truth bounding box and the pseudo-labels with inaccurate
3D attribute prediction, our method remains applicable to
distinguish the reliable pseudo-labels. But it’s worth noting
that on a severely uneven road surface, where the homogra-
phy constraint is substantially violated by the ground truth
object, our approach may struggle to distinguish between
reliable and unreliable pseudo-labels.

3. Extended Implementation Details

Our experiments are conducted based on the MonoFlex[12]
with the official code provided by the authors. For the
KITTI dataset, we first pre-train the model on the labeled
data for 140 epochs with a batch size of 8 following the
default setting. After that, we copy the pre-trained model
weight into the student and teacher models for end-to-end
semi-supervised fine-tuning. For each iteration of semi-
supervised fine-tuning, we randomly select 8 labeled im-
ages and 8 unlabeled images as the batched data and pad the
images to the size of [1280, 384]. We utilize the AdamW
optimizer with a learning rate of 3e-4, and weight decay of
le-5, and fine-tune the model with semi-supervised learn-

ing for 20 epochs, in which the learning rate is decayed at
the 10th and 15th epochs by a factor of 0.1, respectively. To
demonstrate the generality of our approach, we also con-
duct experiments on the nuScenes dataset [1], which is an-
other large-scale autonomous driving dataset. Since [9, 10]
are the only M30OD works that provide the results on this
benchmark, we choose to conduct experiments with these
two base detectors. For the nuScenes dataset, we follow the
default setting of FCOS3D[9] and PGD[10] implemented
in MMDetection3D. We first pre-train the model on the la-
beled data for 12 epochs with a batch size of 16 and input
size of [1600,900]. We utilize the SGD optimizer with a
learning rate of 2e-3 and weight decay of le-4. For each it-
eration of semi-supervised fine-tuning, we randomly select
8 labeled images and 8 unlabeled images as the batched data
and conduct fine-tuning for 5 epochs, in which the learning
rate is decayed at the 2nd and 4th epochs by a factor of
0.1, respectively. For the experiments on Other M30D De-
tectors, given that the pseudo-label mining algorithm based
on homograph in DPL relies on key point prediction of the
3D bounding box. For the monocular 3D object detector



[6, 7, 11] without key point prediction, we add the key point
prediction branch head to the original head. All experiments
are conducted with 8 x 32G NVIDIA Tesla V100 GPUs.

4. More Experiment Results

Effect of Diversity of Unlabeled Data. We analyze the
impact on the SSM30D performance of the distribution of
the unlabeled data. The KITTI raw data were collected
from five diverse scenes: city, residential, road, campus,
and person, as depicted in the right of Fig.1. Analyzing the
object class distribution in each scene revealed significant
differences. For example, in residential and road scenes,
the car object dominates, with few pedestrians and cyclists.
Conversely, campus and personal scenes mainly consist of
pedestrians. To investigate the effect of unlabeled data di-
versity, the images were roughly divided into two groups:
car-oriented, and person-oriented according to their object
class distribution. We randomly chose 5K images for each
group as the unlabeled data. We further constructed a more
comprehensive unlabeled data set by combining the images
randomly selected from both two groups, with 2.5K images
selected for each group. The results are reported in Tab.1.
It clearly shows that the diversity of these classes affects
performance. Specifically, car-dominated unlabeled images
boost the performance of the car category, while resulting
in a slight performance decrease for the pedestrian and cy-
clist category. There is an opposite trend when training
with person-dominated unlabeled images, in which the per-
formance of pedestrian and cyclist categories are improved
and no obvious performance gain for the car category is ob-
served. The main reason behind these results is the con-
firmation bias caused by the class imbalance. By contrast,
the unlabeled data combined images from both groups, con-
taining rich objects, improve the performance of all three
object categories. These results underscore the importance
of unlabeled data diversity in semi-supervised learning for
M30D.

Performance on Large Scale Dataset. The nuScenes
Dataset is a large dataset for multi-view 3D object detec-
tion (MVOD), and some M30OD methods [9, 10] can be
extended to achieve MVOD by conducting monocular de-
tection in every single view and then fusing the multi-view
detection results. To demonstrate the generality of our
method, we conducted further experiments on this large-
scale dataset based on FCOS3D and PGD with the offi-
cial codes from MMDetection3D. Note MVC-MonoDet [4]
is the only SSM30D work that reports the results on the
nuScenes dataset, but they only present some partial met-
rics. Our results, detailed in Tab.2, showcase substantial
performance improvements through our proposed pseudo-
labeling method. Specifically, we achieve gains of 3.1 in
mAP and 2.2 in NDS for FCOS3D, 1.8 in mAP, and 1.2
in NDS for PGD. Our method also outperforms MVC-

MonoDet in both mAP and mATE metrics. These results
verify the efficacy of our method, demonstrating its poten-
tial for extending to multi-view 3D object detection and
generalization. Note that MVOD focuses on feature inter-
section between different views or temporal frames which
is beyond the scope of this article. Therefore, we not aim to
surpass the state-of-the-art methods [2, 3, 5] on this bench-
mark , and instead just to show the generalization ability of
our method.

Table 1. The effect of the diversity of unlabeled data. For each
group, we randomly select SK images as the corresponding un-
labeled data, respectively. We further construct a comprehensive
unlabeled data set by combining both images randomly selected
from Car-dominated and person-dominated groups, with 2.5K im-
ages randomly chosen for each group.

Val, AP3D ‘R40
Unlabeled Data Car Pedestrian Cyclist
Easy Mod Hard |[Easy Mod Hard|Easy Mod Hard
Sup-baseline  [22.80 17.51 14.90|7.30 5.53 4.24 |4.67 2.23 1.93
Car-dominated |24.54 18.44 15.68|6.91 5.43 4.51|3.52 2.04 1.65
Person-dominated [ 22.76 17.23 14.71|8.23 6.66 5.02 | 4.87 2.32 2.11
Combined 24.32 18.56 16.12|8.45 6.72 5.07 | 5.35 2.89 2.43

Ablation of Threshold. We ablate the threshold of uncer-
tainty threshold 6,,, location error threshold 6y, in Tab.3. The
best results achieve with 6,, = 0.10 and 6;, = 2.0.
Performance on Pedestrian and Cyclist Categoriy. We
also report the detection performance on the Pedestrian and
Cyclist categories on the KITTI test set in Tab.5, where our
method also provides a significant boost in detection perfor-
mance for these categories with relatively few instances.
Detection Results Visualization. We visualize the detec-
tion results of our method compared to the supervised base-
line method on the KITTT validation set in Fig.2. It clearly
shows that our method not only detects objects more ac-
curately, as observed in 1st, 2nd, and 3rd images but also
exhibits higher prediction recall, as presented in 4th and 5th
images. These results once again demonstrate the superior-
ity of our method.

5. Limitations

Our method significantly improves the performance of
monocular 3D detection methods with only image input.
Compared with other 3D object detection methods, for
example, LiDAR-based method, BEV-based method, etc,
monocular 3D object exhibits a great advantage in the prac-
tical application. With single-camera setups, it is more
cost-effective and adaptable to numerous practical scenar-
ios such as robotics, autonomous driving, and mobile aug-
mented reality. However, due to the fundamental difficulty
in estimating depth from a single RGB image, current per-
formance still lags behind some methods using extra in-
puts (such as LiDAR). This limitation motivates us to ex-
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Figure 1. KITTI raw data spans five scene types. Bottom: Object class distribution across scenes. Accordingly, We divide the unlabeled
data into two groups: (1) Car-dominated (city, residential, road), and (2) Person-dominated (campus, person).

Table 2. The performance comparison in the nuScenes validation set. Note that the MVC-MonoDet only provides the mAP and mATE
metrics in this dataset.

mAP 1|mATE | |mASE | |mAOE | |mAVE | |mAAE | [NDS 1
Methods Extra Data @ m) (Toiow) | (rad) /) | (Iaco) %
MVC-MonoDet | Unlabeled | 0.349 | 0.640 - - - - -
FCOS3D None 0.321 | 0.754 | 0.260 | 0.486 1.332 0.157 |0.394
DPLrcossp |Unlabeled | 0.352 | 0.633 | 0.248 0.423 1.264 0.143 | 0.416
PGD None 0.358 | 0.667 | 0.264 | 0.434 1.276 0.176 | 0.425
DPLpcp Unlabeled | 0.376 | 0.577 | 0.250 | 0.412 1.258 0.161 | 0.437
images. These unlabeled data contain more reliable object
Val, AP3p|Rao Labels | Loc Error(m) depth information, which can greatly ease the difficulty of
Ou On Easy TMod | Hard GTs 0.91
510 TT 25"‘2; 19‘;9 1733 ¢ PLs 229 accurately detecting 3D objects in real-world scenarios. We
0:20 2:0 2 4:9 4 19:1 5| 6:82 - - leave this exploration for our future work.
0.10 2.0|26.51|19.84 | 17.13 Table 4. The average lo-

and 65,.

calization errors of pseudo
Table 3. Ablation of the threshold 6., labels(PL) and

truth(GT) labels.

ground

Table 5. Performance comparison on the KITTI test set of the
Pedestrian and Cyclist category.

Test, APgD |R40

Methods Pedestrian Cyclist
Easy | Mod | Hard | Easy | Mod | Hard
M3D-RPN | 4.92 |3.48 294 (0.94|0.65 | 0.47
MonoPair | 10.02 | 6.68 | 5.53 | 3.79 | 2.12 | 1.83
MonoFlex | 9.02 | 6.13 |5.14 | 2.36 | 1.44 | 1.07
DPLrrEx |11.66|7.52|6.16|8.41(4.51|3.59

plore the use of unlabeled data from other complementary
sensor modalities such as LiDAR point clouds and stereo
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Figure 2. Visualization of the detection results on the KITTI validation set. For each image, the first and second row is the detection results of the supervised
baseline and our method, respectively. The box in red and on the BEV plane are the ground truth box and detection bounding box, respectively.



