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6. Discussions on the Motion Model Bound

The singular values of the 3D linear transformation matrix
carry essential physical meanings. Via singular value de-
composition, the motion can be regarded as a consecutive
operations of rotating to a new coordinate frame, perform-
ing scaling in each dimension based on the singular values,
and rotating back to the original coordinate frame. There-
fore, the upper bound of such deformation is indicated by
the largest singular value.

In the main paper, we demonstrate the representation
power of DPF [48] is bounded, based on Eq. (6) and Eq. (7).
Here we present more details in terms of a theorem with
proof.

Theorem 1. Provided
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in which o is the composition of element-wise multiplica-
tion and broadcasting a vector to a matrix, as well as
i = {0,1,....,n — 1}, the bound of the spectral norm of
Vu is given by

[Vaulls < d™ - [T IWill2, (16)
i=0
in which n and d denote the number of hidden layers and
the dimension of hidden layers, respectively.

Proof. Referring to the matrix norm properties [19, 62], we
have the following inequalities on the spectral norm, i.e.
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in which ¢; is the matrix with the same column ¢;, and has
the shape of R?*9. This corresponds to the shape of W,
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and hence it has ¢ = 3 at the input layer and ¢ = d in the
hidden layers. Therefore, we assume ¢ = d in the following
derivations to obtain the upper bound.

Note the rank of the matrix ¢; is 1, and we can have

@i(@)|l2 = [|Gi(x) | = Vd- |pi(z)]2 < d, (2D

according to ||¢;|lc < 1. Thus, we can derive

[Vally <d*- T IWil2. (22)
=0

O

Although the constant factor d" is large, it is only
reached when every |¢;| is equal to 1, which is implau-
sible in practice. In addition, the entries in W; are from
the uniform distribution with a tiny range around 0 [53],
which further constrains the spectral norm of the Jacobian
matrix. Due to the challenges of spectral analysis on high-
dimensional random matrices, we can look into the degen-
erated 1D case, which is given by

du nl
= Wn H) w; cos(w;x + b;). (23)

In this case, we can easily derive

n—1 n
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which indicates that the motion complexity is heavily
bounded.

A statistical perspective. The boundedness can be also
investigated from a statistical perspective. Starting with

n—1
IVulls < [[Wallo - [ IWicwi(@) 29
i=0
that is from Eq. (17), we can reason the entries of W; o
w;(x) are converging to the standard normal distribution if
the model weights are initialized as in SIREN [53]. Specifi-
cally, the entries of W; are from the defined uniform distri-
bution, ¢; is from the arcsine distribution, since the cosine
activation function is equivalent to the phase-shifted sine
activation function and the bias does not modify the distri-
bution for high enough frequency [53, Theorem 1.8]. Ac-
cording to [7, Theorem 2.5], the largest singular value of
A; = W, 0 p;(x) is bounded, having

lim sup A\ (d1A; A7) < 4, (26)
d—o0
in which d is the hidden dimension and \; is the largest

eigenvalue.  Therefore, their compositions with i =
0,...,n — 1 are also bounded.
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Figure Al. Illustration of the DOMA model architecture. The
SIREN layers [53] produce an affine transformation, which maps
the point from @ to y at time ¢.

DPF -Trans -SE(3)
(6d +nd®)(T —1) 7d+nd? 13d 4 nd?

-Scaled SE(3)
14d + nd?

-Affinity
16d + nd?

Table A1l. The number of parameters in the employed SIREN net-
work. T, n, d denote the number of frames in the sequence, the
number of network hidden layers, and the hidden dimension, re-
spectively. The suffixes denote different versions of DOMA.

7. Additional Discussions on DOMA
7.1. The Network

The model architecture. The DOMA models can be vi-
sualized in Fig. Al. In this case, the SIREN [53] network
contains one input layer, one output layer, and two hidden
layers. In the case of the ‘SE(3)’ and ‘scaled SE(3)’ models,
6D continuous rotation representations [72] are produced
by the output layer, which are then orthogonalized to rota-
tion matrices.

The model sizes. Since the 1D temporal dimension is in-
corporated in the input layer, DOMA models have O(1)
complexity w.r.t. the motion sequence length. The sizes
of different models are summarized in Tab. Al.

7.2. Additional Discussions on Novelties

Modeling the deformation field or the motion field is not
a new task. Instead, various methods have been devel-
oped within respective tasks, such as geometry deformation,
neural rendering, dynamic scene reconstruction, avatar cre-
ation, etc. Their exploited motion methods are diverse in
terms of the neural architecture, positional encoding, un-
derlying deformation models, and so on. However, an im-
portant aspect is often overlooked: the motion field should
be spatiotemporally regularized by nature. To fill this gap,
we leverage the SIREN [54] network, and extend the start-



of-the-art work DPF [48] to a multi-frame smooth affinity
field model. By introducing additional DOFs at the output
layer, we find the model representation power is improved
in a different way from enlarging the model hidden layers,
and come up with a solution to increase the model capac-
ity while retaining the model size. Moreover, we introduce
a smoothness regularization term to overcome overfitting,
which does not assume the underlying motion is e.g. rigid
like in [44]. The effectiveness of DOMA is demonstrated
with experiments in Sec. 4 and the supp. mat.

The advantage of DOMA is more obvious when the
ground truth motion is more complex. An example is mod-
eling the loose long skirt motion. As shown in Tab. A8,
DOMA-Affinity is consistently superior to DPF on the ‘fe-
lice’ sequences of Resynth. Another example is model-
ing the fluid dynamics, which is investigated in Sec. 9.2.
We can see DOMA-Affinity outperforms DPF significantly.
Since DPF only models deformations between the canoni-
cal frame and frame ¢, it cannot ensure the temporal smooth-
ness between ¢ and ¢ + 1.

Despite aiming at different tasks, our work is also related
to object shape and view recovery from images. Kanazawa
et al. [22] propose a framework to learn from an annotated
image collection, and recover the 3D shape in a canonical
frame, the camera pose, and the texture of an object from
a single image. The 3D object shape is parameterized by
a learned mean shape and per-instance predicted deforma-
tion. To encourage additional properties such as surface
smoothness and regularized deformation, generic priors are
leveraged in the training loss. Goel ef al. [16] extend this
framework to learn from an image collection without anno-
tations of the keypoints and the camera. To further improve
the performance, Gharaee et al. [15] propose to predict a
set of keypoints to represent the shape, corresponding to
positions on the category-specific mean shape in 3D. After-
wards, the camera pose is estimated by a robust PnP net-
work [6]. These solutions of decoupling the instance-level
shape into the mean shape and the deformation also inspire
us how to model motions. Furthermore, we are encouraged
by these works to reconstruct dynamic scenes from multi-
view videos as future work.

8. Experiment Details

8.1. Additional Presentations on Point Motion Pre-
diction (Sec. 4.1)

We leverage and modify the codebase of ResFields [37]
for the implementations of baselines MLP-ReLU and DCT-
NeRF [58].

bear3EP_Agression
demon_JazzDancing
dragonOLO_act25
michelle_StepHipHopDance
mutant_Defeated
tigerD8H_Swim17
vampire_Breakdance1990
vanguard_JoyfulJump

Table A2. The leveraged DeformingThings4D [27] sequences in
Sec. 4.1.

8.1.1 Dataset

The 7 sequences from DeformingThings4D [27] are listed
in Tab. A2. For each sequence, we extract the first 100
frames and regard the first frame as the canonical frame.

8.1.2 Baselines

MLP-ReLU and MLP-ReLU PE.6. MLPs with
ReLU [24] are frequently used to warp points in existing
works. In our experiment, the architecture contains 6 hid-
den layers of 128 hidden dimensions. In Tab. 1, the Fourier
positional encoding [38] is not used in ‘MLP-ReLU’, but is
applied in ‘MLP-ReLU PE.6’ with 6-level resolutions.

DCT-NeRF [58]. The Fourier positional encoding is not
applied. Rather than outputting the target point location y,
this baseline method produces the coefficients of a DCT ba-
sis that is jointly learned from the data. Similar technology
is also employed in [28].

BANMO [66]. BANMO is a solution to reconstruct the
avatar of a generic object, e.g. cat, from a monocular video.
The avatar bones are modelled by a set of 3D Gaussians, and
the skinning weight is a combination of a Gaussian-based
weighting function and a neural network. The 3D location
of a query point is encoded by Fourier encoding [38]. The
rest pose code is derived by a linear layer, and the pose code
is derived by the Fourier encoding of the frame and a linear
layer. In our experiment, we adopt its avatar deformation
module into our setting and use the hyper-parameters as in
the original paper [66]. Provided a set of training point tra-
jectories, we optimize the 3D Gaussians and the relevant
networks as in [66]. During testing, we animate the testing
points in the canonical frame to produce the trajectories,
based on the learned Gaussians and networks.

BoneCloud. Based on BANMO [66] and KeyTr [41], we
propose this BoneCloud method, which is a learnable bone
basis. Compared to BANMO, this BoneCloud method does



not employ any nonlinear neural network. Instead, it has
a point cloud in the canonical frame, and each point stores
a time sequence of SE(3) transformations. The skinning
weights are created by a pre-fixed radial basis function.
Consequently, a 3D point @ in the canonical frame can
be transformed to y at frame ¢, via linear blend skinning.
Specifically, it is given by

-(gom)@) e

and
Wy, = exp (—o|lx — vil2) (28)
Wy,
Wy = —, (29)
g >k Wk

in which v € R is a bone in the bone cloud, % is the index
of the bone, T} € SE(3) denotes the transformation of the
bone k at time ¢. In our experiment, we leverage 1024 points
as bones. During training, we leverage the provided point
trajectories to optimize the bone locations at the canonical
frame and the bone transformations at individual time steps.
During testing, we transform the testing points in the canon-
ical frame to individual target frames, so as to produce the
point trajectories.

8.1.3 More Results on the Synthetic Dataset

Corresponding to Fig. 2 in the main paper, we show the
qualitative results of all DOMA variants in Fig. A2. We can
see that the affinity field is able to represent all explored lin-
ear transformations. This indicates the output layer highly
influences the motion types that the model can represent.
In order to investigate how the hidden dimension influ-
ences the DOF representation, we increase the hidden di-
mension of DOMA-Trans from 128 to 256. The results are
shown in Tab. A4. Without smoothness regularization, we
can see that a higher hidden dimension slightly improves the
performance in some cases, but degrades the performance
on translation, probably due to overfitting. When apply-
ing the smoothness regularization to overcome overfitting,
motion prediction on translation is significantly improved,
whereas the performances on other linear transformations
are much worse. On the other hand, the performances of
DOMA-Affinity on all motion types are consistently and
considerably improved by the smoothness regularization.
Based on these observations, we can conclude that
* Both the hidden dimension and the DOFs represented by
A can influence the model representation power.
e Increasing the hidden dimension improves the perfor-
mance but not always. Overfitting could occur.
* The smoothness regularization can improve the perfor-
mance significantly if the ground truth DOF is explicitly

Methods Rotation  Scaling  Shearing  Translation
-Trans 2725.4 1817.8 1619.5 1042.4
-SE(3) 730.6 1991.4 1138.3 899.4
-Scaled SE(3) 801.1 685.8 1524.7 1096.2
-Affinity 1486.0 915.4 622.1 822.4
-Trans-E 38.0 1669.6 753.6 38.8
-SEQ3)-E 20.0 1761.3 832.7 26.4
-scaled SE(3)-E 21.2 1161.8 961.1 24.0
-Affinity-E 19.2 155.7 864.0 15.7
-Trans-H 4919.9 2056.4 2446.8 37.8
-SE(3)-H 52.4 2012.4 1665.0 36.9
-scaled SE(3)-H 29.3 22.1 688.0 30.3
-Affinity-H 54 26.3 8.5 28.8

Table A3. Results on Synthetic sequences w.r.t. EPE (in x10™%).
‘-E’ denotes the elasticity loss proposed in Nerfies [44], and *-H’
denotes our smoothness loss. Best results are in boldface.

Methods Rotation  Scaling  Shearing  Translation
-Trans-128d 2725.4 1817.8 1619.5 1042.4
-Trans-256d 2187.1 1846.9 1515.8 1231.8
-Affinity-128d 1486.0 915.4 622.1 822.4
-Trans-H-128d(0.1) 4919.9 2056.4 2446.8 37.8
-Trans-H-256d(0.1) 4911.8 2078.7 1733.7 217.4
-Trans-H-256d(1) 10945.3  8400.4 8701.2 16.2
-Affinity-H-128d(0.1) 54 26.3 8.5 28.8

Table A4. Results on Synthetic sequences as in Tab. A3 in the
main paper. Numbers denote EPE in x10™%. -128d” and *-256d’
denote the hidden dimension of the SIREN network. The number
in () denotes the weight of the smoothness loss term. Best results
are in boldface.

modeled at the output layer. Otherwise, it can degrade the
performance.

* Increasing the hidden dimension cannot simply increase
the DOF representations. Otherwise, the smoothness reg-
ularization should lead to consistent improvements for all
linear transformations.

Runtime analysis. In addition, we compare our derived
analytical gradients with auto-diff of Pytorch [45] w.r.t. the
runtime. We set the smoothness loss weight to 0.1, and
train DOMA-Affinity for 1000 iterations. This experiment
is conducted with Ubuntu 20.04, NVIDIA TITAN RTX
24GB, CUDA 11.4, 32GB RAM. The results are shown in
Tab. A5. We can see the analytical gradients improve the
efficiency consistently. Compared to the standard auto-diff,
the runtime is reduced by 28%.
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Figure A2. Illustrations of results on the Synthetic sequences. The smoothness regularization is applied. Rows show types of motions, and
columns show the testing points in the canonical frame, a target frame, and estimated results from different methods, respectively.

Methods Rotation ~ Scaling  Shearing  Translation  average
auto-diff [45] 133.68 132.36 133.44 133.51 133.25
analytical grad 96.08 96.26 95.78 95.92 96.01

Table AS. Comparison between our derived analytical gradients
and auto-diff of Pytorch. Runtime is measured in seconds.

8.2. Additional Presentations on Guided Mesh
Alignment (Sec. 4.2)

8.2.1 Dataset

We employ the ReSynth dataset [31, 32] in this study.
Specifically, we choose 16 sequences from 4 subjects in the
packed sequences in the test split (see Tab. A6). For each se-
quence, we first perform down-sampling by every 2 frames,
and then select the first 30 frames for experiments. The first
frame in each sequence is regarded as the canonical frame.

The motion complexity depends on the subject and the
clothing type. As shown in Fig. A3, sequences with
‘rp_felice_posed_004’ are more complex than others, be-
cause of the loose long skirt. In this case, the points on
the long skirt are far away from the body surface, which
is aligned and guided by the SMPL-X [46] mesh vertices.
Other subjects have tight clothes.

Subjects

Actions

rp-aaron_posed_002

96_jerseyshort_hips
96_jerseyshort_squats
96_longshort_flying_eagle
96_longshort _tilt_twist_left

rp_celina_posed_005

96_jerseyshort_hips
96_jerseyshort_squats
96_longshort_flying_eagle
96_longshort _tilt_twist_left

rp_felice_posed_004

96_jerseyshort_hips
96_jerseyshort_squats
96_longshort_flying_eagle
96_longshort _tilt_twist_left

rp_janna_posed_032

96_jerseyshort_hips
96_jerseyshort_squats
96_longshort_flying_eagle
96_longshort_tilt_twist_left

Table A6. Employed Resynth sequences in Sec. 4.2.



rp_aaron_posed_002

rp_celina_posed_005

rp_felice_posed_004 rp_janna_posed_032

Figure A3. Illustrations of the 4 subjects in our employed sequences. These meshes are created by Poisson surface reconstruction based on
the provided oriented points in the canonical frames. We have created 16 such meshes for individual sequences, which are roughly at the

same pose, i.e. the A-pose.

8.2.2 Performances of All Model Variants

In Tab. 3, we only show the performance of the DPF base-
line, DOMA-Trans, and DOMA - Affinity. Here we show the
performances of all DOMA variants under the same exper-
iment setting. The results are presented in Tab. A7. We can
draw similar conclusions as in Sec. 4.2. The performance
of the affinity field is similarly better than other variants, in
particular on the Chamfer distances.

8.2.3 Analysis on Clothing Types

In addition to the averaged performance on all sequences,
we have also observed consistent trends on individual sub-
jects that have different clothing types. In this experiment,
we leave ‘rp_felice_posed_004’ out of others, and perform
evaluations separately. For compactness, we only show
the comparison between our proposed affinity field and the
frame-wise DPF models [48], with the weights of the AIAP
loss term and the motion smoothness term being (1, 0.001).
The results are shown in Tab. A8. We can see that the
affinity field outperforms DPF [48] on the subject with the
long skirt, whereas performs worse on subjects with tight
clothing. A probable reason is that points that are close to
the body surface can be effectively guided by the SMPL-X
mesh vertices. Due to much more model parameters, the
frame-wise DPF models can overfit to the guidance points,
and hence produces better results on the body surfaces and
the tight clothes. Simultaneously, it produces more arti-
facts and discontinuities at regions that are far away from
the guidance points, leading to inferior performance to the
affinity field.

Lepd  Lnd  STDE),  STD(V),
DPF [48] 1.149 0.122 11.6 24.6
-Trans 1.230 0.128 12.8 229
-SE(3) 1.343 0.134 16.2 22.9
-Scaled SE(3) 1.273 0.127 16.2 22.8
-Affinity 1.142 0.125 11.9 22.8
DPF-A [48] 1.166 0.119 10.3 24.2
-Trans-A 1.195 0.123 10.4 23.0
-SE(3)-A 1.278 0.123 11.5 23.0
-Scaled SE(3)-A 1.20 0.120 11.3 23.0
-Affinity-A 1.151 0.122 10.6 23.0
DPF-H [48] 1.142 0.123 10.3 24.2
-Trans-H 1.207 0.128 10.8 229
-SE(3)-H 1.230 0.127 12.2 23.0
-Scaled SE(3)-H 1.189 0.125 11.5 22.9
-Affinity-H 1.127 0.127 10.1 229
DPF-AH [48] 1.189 0.120 9.3 24.3
-Trans-AH 1.240 0.124 9.3 23.0
-SE(3)-AH 1.265 0.124 10.9 23.1
-Scaled SE(3)-AH 1.255 0.126 8.7 23.0
-Affinity-AH 1.187 0.124 8.9 23.0

Table A7. Results of guided mesh alignment on our selected
Resynth sequences. Lcp is in x10™*. STD(E) and STD(V) are
given in millimeters. This table is supplementary to Tab. 3 in the
main paper.

8.2.4 Influence of Hidden Dimensions

We set the hidden dimension to 128 by default in the main
paper and the above experiments. Here we increase it to
256 and re-evaluate the performances. According to our
analysis of the motion model bound (see Sec. 3 and 6), in-
creasing the hidden dimension is able to improve the model



Methods  CD] CDN| STD(E)| STD(V)|

DPF-AH [48] 3.086 0.194 144 25.8
-Affinity-AH 2.857 0.190 15.3 21.9

DPF-AH [48] 0.557 0.096 7.6 23.8
-Affinity-AH 0.630 0.102 6.8 233

Subjects

rpfelice_posed_004

others

Table A8. Evaluation of methods on the Resynth sequence
‘rp_felice_posed_004’ as discussed in Section 4.2.

Methods CD| CDNJ| STD(E)] STD(V)}

DPF-AH [48] 1.047 0.100 10.1 242
-Trans-AH 1.058 0.106  10.6 23.2
-SE(3)-AH 1.055 0.105 10.9 23.2

-Scaled SE(3)-AH 1.060 0.104  10.3 23.2

-Affinity-AH ~ 1.023 0.105 9.8 23.2

DPF-AH [48]  2.740 0.151 15.6 25.3
-Trans-AH 2724 0.157 16.0 22.6
-SE(3)-AH 2.683 0.149 185 22.5
-Scaled SE(3)-AH 2.694 0.148 17.5 22.6
-Affinity-AH ~ 2.544 0.152  16.5 22.5

DPF-AH [48]  0.483 0.083 8.3 23.8

-Trans-AH 0.503 0.089 8.8 234

others -SE(3)-AH 0.513 0.090 8.4 23.5
-Scaled SE(3)-AH 0.516 0.089 79 23.5

-Affinity-AH ~ 0.515 0.090 7.6 23.5

Subjects

all sequences

rp_felice_posed_004

Table A9. Evaluations based on the models with 256D hidden
variables. Other settings are identical with Tab. 3 and AS8. Best
results are highlighted in boldface.

representation power on the motion complexity.

The results are presented in Tab. A9. Compared to mod-
els with 128D hidden variables (see Tab. 3 and Tab. A8),
models with 256D hidden variables consistently produce
better results. With this new setting, the performance gaps
between individual methods tend to vanish. The temporal
smoothness tends to degrade though.

In the meanwhile, we can see that the affinity field
still has comparably better performance than frame-wise
DPF [48], but produces smoother results, leading to
the same observation and conclusion as demonstrated in
Sec. 4.2. Focusing on the performances on different se-
quences, we can see DPF [48] still outperforms DOMA
models on tight clothing w.r.t. alignment, but the gap be-
comes smaller compared to Tab. 3. The affinity field out-
performs DPF on the loose long skirt sequence by a large
margin. Furthermore, from the model size perspective, our
DOMA models are still significantly more lightweight than
the DPF [48] baseline.

9. Additional Experiments
9.1. Learning 2D Image Deformation

Similar to the experiments on the 3D synthetic dataset,
here we conduct an experiment on 2D image deformation,

in order to further investigate the representation power of
DOMA models.

Data, evaluation, and methods. We use a RGB image of
cat that has 512x512 of pixels. As our synthetic dataset,
we perform translation, rotation, scaling, and shearing in
the 2D domain, and produce 30 frames. In each case, we
randomly choose 25% points for training the motion field,
and use the remaining for testing. The evaluation metric is
the same as in Sec. 4.1. DOMA-Trans and DOMA-Affinity
with different hidden dimensions are applied in this experi-
ment. No regularization is used during training.

Results. The quantitative evaluation is shown in
Tab. A10, and some qualitative results are shown in
Fig. A4. We can see that the affinity model outperforms
the translation model consistently with different hidden
dimensions. In particular, the performance of the affinity
model is superior when the hidden dimension is smaller.
These results demonstrate the advantages of additional
DOFs.

9.2. Inferring Dynamics of Fluid Fields

In Sec. 4.1, we have investigated the model representation
power based on the DeformingThings4D [27] sequences.
Despite various model shapes and movements, they are lim-
ited to elastic deformations of solid objects. In this section,
we propose a more challenging scenario, modeling a fluid
field. To perform empirical studies, we follow [1] to simu-
late how liquid moves in a bounded field with Unity3D, and
record the particle trajectories (see Fig. AS).

The entire sequence contains 931 frames and 27,000 par-
ticles. We randomly choose 50% for training the motion
field and use the rests for testing. We find that all meth-
ods investigated in this paper are not able to reconstruct
the entire sequence. Thus, we down-sample the entire se-
quence by every 2 frames, and then trim the down-sampled
sequence into 10-frame clips. Specifically, the frame in-
dices of the clips are {(¢,t + 10)}4=10,15,...,325, in which
the sequences with trivial motions, e.g. static state in the
beginning and steady state in the end, are excluded. This
pre-processing will lead to 22 clips in total.

In each clip, the first frame is regarded as the canonical
frame. Points in the canonical frame are transformed into
individual target frames, and their averaged L1 distances to
the ground truth are minimized during training. The evalu-
ation metric is identical to Sec. 4.1.

In this experiment, we compare frame-wise DPF [48],
DOMA-Trans, and DOMA-Affinity. These two DOMA
models have 128D hidden variables and 2 hidden layers. To
avoid overfitting, the frame-wise DPF models have 2 hid-
den layers and 105D hidden variables, in order to keep most
sequences having comparable training errors. Results are
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Figure A4. Tllustration of modeling 2D image deformation, in which the hidden dimension is 64. ‘GT’, ‘trans’, and ‘affine’ denote the
ground truth, DOMA-Trans, and DOMA-Affinity, respectively.

Rotation Scaling Shearing Translation
-Trans  -Affinity -Trans  -Affinity -Trans -Affinity -Trans -Affinity
hdim=32 60.8 85.0 312 8.9 11.7 5.4 100.4 44.0
hdim=64 64.5 339 15.3 6.2 10.5 4.3 25.8 18.7
hdim=128 354 20.3 8.2 4.6 6.4 3.8 20.2 20.4

Table A10. Evaluations in the 2D image deformations. As in Tab. A3, the numbers denote EPE in x10~*, and are the lower the better.

presented in Tab. A11. We can see that the DOMA mod-
els considerably outperform the DPF baseline. In addition,
the affinity field model performs comparably better than the
translation field model. Together with the experiments in
Sec. 4.1, we can conclude that DOMA models are superior

to the frame-wise DPF method [48], as well as other state- Methods Scene Flow Error],
of-the-art baselines. Fig. A6 illustrates some examples.of DPF [48] 412.57

how these methods perform. We can see that the frame-wise

DPF method can lead to significant discontinuities between DOMA—Trans. 201.66
frames, and less accurate motion prediction than DOMA. DOMA-Affinity 182.46

Table A11. Motion prediction of unseen points on fluid simulation
sequences. The numbers EPEs in x 10~*. Best results are in bold-
face.



Figure A5. The particle system to simulate a fluid field in Unity3D, which is implemented based on [1].

time
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-Affinity
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Figure A6. Some results of particle motion prediction in the simulated fluid field. The scene is rendered from the front view.
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