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1. Parameter Selection and Analysis
In the main body of this paper, we set both parameters α and
β in Eq. (1) to 1. Here, we use the SOTS-indoor dataset to
analyze the effectiveness of α = 1 and β = 1 by changing
one while fixing the other. Figure 1 illustrates the PSNR
curves when each parameter changes.

`dehaze = α‖Ae,r � (u∗ − u)‖1

+ β

n∑
i=1

λi
‖V GGi(u)− V GGi(Φ(ũ∗, ωd))‖1
‖V GGi(ũ∗)− V GGi(Φ(ũ∗, ωd))‖1

(1)
It is observed from Figure 1(a) that the proposed method

performs well within the range of α ∈ [0.75, 1.25], and the
PSNR reaches its peak when α = 1. Consequently, we set
α = 1. On the other hand, as shown in Figure 1(b), when
β changes within [0.75, 1.50], the performance is relatively
high, and achieves the best when β = 1. Therefore, we set
β = 1 throughout the experiment.

Figure 1. Parameter analysis on the SOTS-indoor dataset. PSNR
curves with α and β.

2. Computational Complexity Analysis
In this section, we analyze the computational complexity of
the comparative methods from three aspects: the quantity of
model parameters, FLOPs, and the time required for testing.
The results are listed in Table 1. The test time is the duration
required for the model to process an image measuring 460×
620 pixels. As indicated in Table 1, the parameter quantity
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and FLOPs of our model are moderate. The test time for
our model is 0.117 second, indicating a relatively fast and
acceptable inference speed. Consequently, our model can
be practically deployed and applied following training.

3. Experiments on Real-world Datasets
The real-world Dense-Haze [1] and NH-Haze [2] datasets
are used for image dehazing in real scenarios. The Dense-
Haze dataset serves as the image dehazing challenge of
NTIRE2019, consisting of 55 densely hazy images with
paired clear images. The NH-Haze dataset, employed in the
NTIRE2020 image dehazing challenge, contains 55 pairs of
non-uniformly hazy images and their corresponding clear
versions. In each dataset, the last 5 images are reserved for
testing, while the remaining images are used for training.

Figure 2. Visual comparison on Dense-Haze dataset.

To verify the generalizability of the proposed method,
we conduct comparative experiments with existing meth-
ods on the real-world Dense-Haze and NH-Haze datasets.
It is well-established that dehazing from real-world hazy
images is inherently more challenging than that from syn-
thetic hazy images. This increased difficulty stems from
the typical characteristics of real-world haze, which tends to
be denser and exhibits a non-uniform distribution. The de-
hazing results obtained by different methods on the Dense-
Haze and NH-Haze datasets are shown in Figure 2 and Fig-
ure 3, respectively. From Figure 2, one can observe that
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Table 1. Performance comparison of the different methods on the quantity of model parameters , FLOPs and test time.

Methods AECR-Net [15] PSD [4] MAXIM-2S [14] Dehamer [6] D4 [16] Dehazeformer [13] C2PNet [18] MB-TaylorFormer [11] MITNet [12] Ours

Parameters(M) 2.61 6.21 14.10 135.45 10.7 25.44 7.17 7.43 2.49 7.16

FLOPs(G) 26.10 143.91 216.00 24.47 2.25 139.85 460.95 44.05 17.13 62.89

Test time (s) 0.006 0.559 0.641 0.170 - 0.328 0.929 1.163 0.049 0.117

Table 2. Performance of the proposed method is compared with that of state-of-the-art methods on real-world datasets (Dense-Haze and
NH-Haze). Best values are in bold.

Methods
Dense-Haze NH-Haze

PSNR↑ SSIM↑ NIQE↓ PIQE↓ FADE↓ PSNR↑ SSIM↑ NIQE↓ PIQE↓ FADE↓
DCP [7] 11.01 0.4165 5.2502 15.0944 2.7647 10.57 0.5196 5.2502 5.0944 0.7647

DehazeNet [3] 9.48 0.4383 6.5778 7.9937 2.6119 16.62 0.5238 2.8354 5.2104 0.6675
AOD-Net [8] 12.82 0.4683 6.2253 10.3068 1.9741 15.40 0.5693 2.8416 5.5681 0.3620

GridDehazeNet [9] 14.96 0.5326 7.0555 10.7274 4.3710 10.07 0.3986 2.8246 5.6275 0.7486
MSBDN [5] 15.13 0.5551 6.6765 9.8121 3.1787 19.23 0.7056 2.6862 5.2017 0.7423
FFA-Net [10] 12.22 0.4440 6.8754 20.1206 1.1549 19.87 0.6915 2.6624 5.7624 1.0356

RefineDNet [17] 12.91 0.4584 5.8663 11.4998 1.1159 12.91 0.4584 2.8067 5.9807 0.4605
PSD [4] 9.73 0.4345 5.4040 10.9304 1.6434 10.32 0.5274 2.8556 5.0698 0.4563

Dehamer [6] 16.22 0.5602 6.5784 56.5955 1.3626 20.66 0.6844 2.9575 8.0992 0.3883
D4 [16] 11.49 0.4821 6.1627 14.8036 2.2183 12.66 0.5072 2.5849 5.7850 0.5359

Dehazeformer [13] 16.29 0.5100 – – – 20.47 0.7310 – – –
C2PNet [18] 16.88 0.5728 – – – – – – – –

MB-TaylorFormer [11] 16.44 0.5660 5.8181 21.1580 1.1907 – – – – –
MITNet [12] 16.97 0.6056 6.0711 35.8864 1.8673 21.26 0.7122 3.0026 10.1390 0.3624

Proposed 17.00 0.6101 5.1017 6.7368 1.0696 20.46 0.7963 2.5186 4.9142 0.3535

Figure 3. Visual comparison on NH-Haze dataset.

on the Dense-Haze dataset, the dehazing results of com-
pared methods is not satisfactory except Dehamer, MB-
TaylorFormer, MITNet and the proposed method. However,
those four methods mentioned above provide limited dehaz-
ing outcomes for dense haze, where the haze residues and
color distortion still exist to some extent. From Figure 3, it
can be seen that the dehazing results are poor on NH-Haze
dataset, with the exception of Dehamer, MITNet and the
proposed method.

Furthermore, the quantitative evaluation results on the
Dense-Haze and NH-Haze datasets are presented in Table 2.
It can be seen that the proposed method achieves the best
values across all evaluation metrics when applied to the

Dense-Haze dataset. For the NH-Haze dataset, the pro-
posed method attains either the best or comparable scores
on the evaluation metrics. The experimental results demon-
strates the effectiveness of proposed method and its superi-
ority over the state-of-the-art methods.

4. Additional Dehazing Results on Real-world
Images

To further validate the generalizability of the proposed
model, we present the dehazing results of different meth-
ods on real-world dense hazy images, as shown in Figure 4.
From Figure 4, it is evident that our method yields the most
favorable visual results and also attains the best values in
quantitative evaluation metrics.

5. Additional Dehazing Results on Synthetic
Datasets

For a comprehensive comparison, we provide additional
dehazing results of different methods on the SOTS-indoor
and SOTS-outdoor datasets in Figure 5. Moreover, to fa-
cilitate the visual comparison, we display the difference
maps between the enclosed areas and their GTs. The dif-
ference maps reveal that the proposed method yields con-
sistently superior dehazing results compared to other meth-
ods.



Figure 4. Visual comparison on real-world dense hazy images.

Figure 5. Additional visual comparisons on SOTS-indoor and SOTS-outdoor.
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