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1. Interactive Executable Interface
We offer a user-friendly interface for our proposed DDBF,
as shown in Fig. 1. This interface includes all the func-
tional buttons of DDBF, enabling users (possibly without
programming knowledge) to interactively use DDBF. Next,
we provide detailed instructions for using this interface.
• File Upload: used to specify original input that is multi-

modal data directly captured by sensors, including low-
light visible images and infrared images.

• Monitoring Mode: used to specify the content displayed
in the left “Input” window. There are three modes avail-
able for selection: infrared mode, visible mode, and
mixed display mode.

• Correction Ratio: a customized button used to control
the enhancement ratio r of DDBF, supporting flexible ad-
justment by sliding the mouse pointer. It enables users
to obtain visualizations of enhancement and fusion that
meet personal visual preferences in a WYSIWYG (What
You See Is What You Get) manner.

• Night/Day: used to specify the lighting conditions when
the input data is taken, so as to automatically recommend
a correction ratio to achieve promising enhancement and
fusion.

• Enhancement Mode: used to specify the content dis-
played in the right “Enhance” window. There are three
modes available for selection: enhancement mode, fusion
mode, and mixed display mode.
Such an interactive interface is very suitable for deploy-

ment on the software side of monitoring and reconnais-
sance, such as traffic monitoring and individual helmets,
as shown in Fig. 2. It will greatly improve visibility at
night and break through the visual limitations brought by
low-reflected light. For instance, in complex and chang-
ing low-light conditions, the security personnel/police can
easily adjust the enhancement ratio on their mobile termi-
nal for more effective monitoring. This interactive exe-
cutable interface will be publicly available for free use in
https://github.com/HaoZhang1018/DDBF.
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Figure 1. An example of the developed executable interactive in-
terface.
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Figure 2. Application scenarios of the controllable enhancement.

2. Adjustment of Enhancement Ratio

The multi-modal image fusion is a low-level visual task that
aims to provide images that are more favorable for the user’s
visual perception. In our method, users can easily adjust the
enhancement ratio by dragging the enhancement ratio but-
ton in the provided interactive executable interface, allow-
ing them to interactively customize the fused results to their
visual preferences. The increase of the enhancement ratio
gradually eliminates the information mismatch between the
infrared and visible modalities, so that the fused image can
effectively fuse the effective information of the two modal-
ities. However, when the enhancement ratio is too large,
the visible image will dominate the fusion process due to
the excessive intensity, causing a weakening of thermal ra-
diation information and thus reducing fusion performance.
Therefore, please obtain visualizations of enhancement and
fusion that meet your visual preferences in a WYSIWYG
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Figure 3. Pipeline of the guided restoration module.

(What You See Is What You Get) manner.

3. Pipeline of The Guided Restoration Module
Because the operations and variables involved in the guided
restoration module are relatively numerous and complex,
we additionally show the pipeline of the guided restoration
module here to help understanding. In the guided restora-
tion module, γs are parameters (i.e., exponent) of gamma
transformation, which are used to control the non-linear
adjustment of image intensity. We use multiple gammas
for original infrared images, constructing a multi-level in-
frared sample set that reflects the desired multiple illumina-
tion/contrast distributions. This set acts as a positive sam-
ple in adversarial learning, guiding the generator to have the
ability to adjust multi-level illumination. Considering that
the value of gamma is negatively correlated with brightness
adjustment (γ > 1 means dimming), we define an enhance-
ment ratio as the reciprocal of gamma, thus serving as the
conditional input of the generator. Notably, only one en-
hancement ratio and a corresponding transformed infrared
sample are randomly fed into the GAN for each iteration.
We provide the pipeline of training the guided restoration
module in Fig. 3 to illustrate the above process intuitively.
Besides, we add a list of variables and describe their para-
phrases in Table 1.

Table 1. List of variables.
Notations Paraphrase

γ Exponent in gamma transformation
r Enhancement ratio r = 1/γ
K Gamma transformation
G Generator
D Discriminator
L Gaussian low-pass filter
U YUV Color removal function

a, b, c Probability labels

4. More Visual Comparisons

As the length of the main text is limited, we provide more
visual comparisons here to demonstrate the advantages of
our DDBF.

4.1. Visual Results of Low-light Enhancement

ExDark Dataset. Two groups of visual results of low-light
enhancement on the ExDark dataset [3] are shown in Figs. 4
and 5. It can be seen that our DDBF can generate enhanced
results with better visual clarity, presenting more vivid tex-
ture structures. For example, our DDBF can best preserve
the trees on mountains in Fig. 4, and patterns on bottles in
Fig. 5. Furthermore, the flexibility of our method for illu-
mination adjustment is very attractive, which realistically
simulates the gradual appearance change of the scene as the
lighting increases. For instance, as the enhancement ratio
increases, the results of our method in Fig. 4 resemble the
transition from early morning to sunrise.
AGLIE Dataset. Figs. 6 and 7 demonstrate the enhanced
results of different low-light enhancement methods on the
AGLIE dataset. As the ground truth is available in the
AGLIE dataset [4], we can refer to it to evaluate the low-
light enhancement performance. It can be observed that by
adjusting the enhancement ratio, our method effectively in-
creases the brightness while maintaining the most consis-
tent color with the ground truth. These results demonstrate
that our method can achieve more promising low-light en-
hancement than other comparative methods.

4.2. Visual Results of Low-light Multi-modal Fusion

LLVIP Dataset. Figs. 8 and 9 show the visualization of
multi-modal fusion on the LLVIP dataset [2], where the
visible modality suffers from the limitation of low light.
Clearly, the fused results of the comparative methods still



Figure 4. Visualization of low-light enhancement on the LLVIP dataset.

Figure 5. Visualization of low-light enhancement on the LLVIP dataset.

Figure 6. Visualization of low-light enhancement on the AGLIE dataset.

Figure 7. Visualization of low-light enhancement on the AGLIE dataset.

exhibit low visibility due to their failure to consider the loss
of beneficial information in the low-light visible modality.
In contrast, our DDBF is capable of preserving rich tex-
tures (e.g., the traffic light in Fig. 9) and salient thermal ob-
jects (e.g., the pedestrians in Fig. 8) by reducing the infor-
mation mismatch between the infrared and visible modal-
ities. Besides, our information fusion module is designed
based on information saliency. Therefore, we can control
the saliency of visible images by adjusting the enhancement
ratio, thereby producing fused results with different appear-
ances. Such a convenient adjustment strategy allows users

to flexibly customize fused images that match their percep-
tual preferences.

MFNet Dataset. The visual results on the MFNet
dataset [1] are presented in Figs. 10 and 11. Similarly, our
method still achieves outstanding fusion performance. For
example, in Fig. 10, the fused result of our method contains
the clearest railing, while maintaining the thermal pedes-
trians and the background lightened trees. In Fig. 11, our
method effectively illuminates the scene, presenting clear
tree canopies, in which small infrared thermal objects are
also preserved well.



Figure 8. Visualization of multi-modal fusion methods on the LLVIP dataset.

Figure 9. Visualization of multi-modal fusion methods on the LLVIP dataset.

Figure 10. Visualization of multi-modal fusion methods on the MFNet dataset.

Figure 11. Visualization of multi-modal fusion methods on the MFNet dataset.

4.3. Visual Results of Daytime Multi-modal Fusion

Figs. 12 and 13 demonstrate the results of our method being
applied to the daytime multi-modal data from RoadScene
dataset [8]. It can be seen that our method exhibits good
generalization performance, which can also deal with the
daytime scenarios well. More concretely, our DDBF cor-
rects the low contrast in daytime visible images and restores
vivid colors, improving the visual quality. Furthermore, by
adjusting the enhancement ratio, our obtained fused results
maintain both the rich structure from the corrected visible
images and the salience from the infrared images.

5. Different Numbers of Levels for Construct-
ing The Infrared Sample Set

During the training process, we center on the original in-
frared image (r = 1) to construct a three-level infrared
sample set (r1 < 1 = r2 < r3). In this way, our pro-
posed guided restoration module can be trained to have the
functions of low-light enhancement and overexposure cor-
rection at the same time, and enable progressive illumina-
tion adjustment. We conduct experiments to verify the in-
fluence of the level number of the infrared sample set on
our method, and the visual results are presented in Fig. 14.
First, we use two different two-level infrared sample sets



Figure 12. Visual results of generalization to the daylight Road-
Scene dataset.

(r1 < 1 = r2, r1 = 1 < r2) to participate in the ad-
versarial training. It can be seen that when two-level in-
frared sample sets are used, the trained model only has
a single-sided controllable adjustment function (low-light
enhancement or overexposure correction), and is not very
sensitive to the changes of the enhancement ratio. In ad-
dition, we also construct a five-level infrared sample set
(r1 < r2 < 1 = r3 < r4 < r5) to participate in the adver-
sarial training of our method. Clearly, both the five-level in-
frared sample set and our used three-level one can guide the
proposed model to achieve both low-light enhancement and
overexposure correction in a controllable manner. There-
fore, we choose a relatively simple 3-level configuration to
achieve the desired function of image enhancement.

6. Comparison with Specialized Low-light Fu-
sion Methods

Research on low-light visible and infrared image fusion is
currently limited in the community. PIAFusion [6] and DI-
VFusion [7] are rare methods that consider lighting in im-
age fusion tasks, so we compare our DDBF with these two
methods on the LLVIP [2] and MFNet [1] datasets. PIA-
Fusion [6] supplements lost information in low-light visible
images by increasing the retention ratio of infrared infor-
mation. However, it still cannot recover scene information

Figure 13. Visual results of generalization to the daylight Road-
Scene dataset.

from dark areas in visible images. DIVFusion [7] roughly
enhances low-light visible images for better fusion repre-
sentation, yet has inflexible and noticeable color distortion
drawbacks. We compare our DDBF with PIAFusion and
DIVFusion on the LLVIP [2] and MFNet [1] datasets to
show the performance difference. Fig. 15 (a) validates the
above points. Fig. 15 (a) validates the above points. In con-
trast, our method achieves flexible, high-color-fidelity fu-
sion in low-light conditions. Table 2 objectively proves the
advantages of our method.

Table 2. Quantitative comparison with specialized low-light fusion
methods.

Dataset LLVIP MFNet
Metric MI ↑ VIF ↑ AG ↑ SD ↑ MI ↑ VIF ↑ AG ↑ SD ↑

PIAFusion 3.113 0.453 6.010 0.174 3.362 0.457 3.550 0.148
DIVFusion 2.120 0.459 5.587 0.208 2.658 0.470 4.410 0.209

Ours (r=1.0) 2.976 0.473 8.020 0.189 3.365 0.485 4.133 0.162
Ours (r=1.2) 2.914 0.486 8.634 0.197 3.378 0.490 4.398 0.176
Ours (r=1.5) 2.904 0.499 9.150 0.204 3.392 0.485 4.591 0.189
Ours (r=1.8) 2.910 0.504 9.252 0.200 3.405 0.480 4.649 0.193
Ours (r=2.0) 2.927 0.503 8.951 0.191 3.435 0.476 4.568 0.190

7. Comparison of Enhancement Plus Fusion
Further, we use the state-of-the-art low-light enhancement
method SCI [5] as a precursor to other comparative fusion
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Figure 14. Analysis of the levels in the infrared sample set.
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Figure 15. Visual comparison with specialized low-light fusion methods.

methods, reducing the information mismatch in low-light
environments. Thus, a comparison of enhancement plus
fusion is performed on the LLVIP dataset [2], and the vi-
sual results are shown in Figs. 16 and 17. It clearly demon-
strates that existing fusion methods fail to achieve satisfac-
tory lighting and color fidelity, even when the input visi-
ble image is enhanced. Moreover, we conduct quantitative
analysis using objective metrics, as presented in Table 3.
Our information fusion module outperforms the other fu-
sion methods across a majority of the metrics, substantiat-
ing its effectiveness and superiority.

8. Additional Ablation Studies

To more fully validate the effectiveness of the specific de-
signs in our DDBF, we implement additional ablation stud-
ies. Firstly, this paper employs Gaussian low-pass filtering
for blurring (following the famous single-scale Retinex), so
as to satisfy the local smoothness properties. We evaluate
the impacts of it by using other blurring operations, includ-

Table 3. Quantitative comparison of enhancement plus fusion.

Dataset LLVIP
Metric MI ↑ VIF ↑ AG ↑ SD ↑

DenseFuse 2.354 0.446 6.027 0.183
IFCNN 2.359 0.475 10.051 0.197

RFN-Nest 2.100 0.442 4.591 0.188
U2Fusion 2.025 0.425 7.841 0.194

SDNet 2.000 0.344 7.106 0.149
PIAFusion 3.113 0.453 6.010 0.174
DIVFusion 2.120 0.459 5.587 0.208

Ours (r=1.0) 2.976 0.473 8.020 0.189
Ours (r=1.2) 2.914 0.486 8.634 0.197
Ours (r=1.5) 2.904 0.499 9.150 0.204
Ours (r=1.8) 2.910 0.504 9.252 0.200
Ours (r=2.0) 2.927 0.503 8.951 0.191

ing mean and bilateral filtering. Secondly, we remove the
scene fidelity loss of the GRM to see its role. Thirdly, an
automatic estimation strategy of enhancement ratio is devel-
oped for comparison. Specifically, five users are invited to
adjust “r” according to their aesthetics on 300 images with



Figure 16. Visual comparison of enhancement plus fusion.

Figure 17. Visual comparison of enhancement plus fusion.

progressive brightness, and the results are shown in Fig. 18.
Intuitively, there is a clear inverse correlation between the
user-selected “r” and the mean intensity. Thus, a rich dic-
tionary of enhancement ratios for images covering different
brightness levels was established. Based on the current in-
put image’s average intensity, we can identify its position
in the dictionary and interpolate the ratios from the nearby
Top 5 samples to obtain the tailored “r”.

The visual comparison on the AGLIE dataset [4] is pre-
sented in Fig. 19. Obviously, the more thorough the scene
texture removal, the better the enhancement performance.
This shows that the removal of scene texture can prompt
GAN to focus more on distinguishing and adjusting bright-
ness. Besides, removing the scene fidelity loss causes com-
plete color deviation, proving its protective effect on scene
colors. Finally, the automatically generated “r” achieves
comparable performance to manual selection. The dictio-
nary will improve with expanded users and images in the
future to reduce bias. Moreover, basing judgments on a
more comprehensive basis rather than just mean intensity
would also help to provide a more accurate estimate of the
enhancement ratio “r”. The quantitative results in Table 4
further support the above conclusions.

Table 4. Quantitative results of low-light enhancement.

Manual Automatic
Dataset Metric Mean Bilateral Ours Ours

AGLIE SSIM ↑ 0.658 0.547 0.706 0.691
PSNR ↑ 15.747 13.635 16.434 16.088

Figure 18. User research on enhancement ratio “r”.
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Figure 19. Visual results of additional ablation studies.
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