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Supplementary Material

The supplementary materials are organized as follows:
• In Appendix A, we give the proof for Theorem 1. The-

orem 1 guarantees the existence of optimal combination
coefficients, so that we can use grid search to find them;

• In Appendix B, as an empirical supplement to Theorem
1, we show our observations on synthetic dataset to reveal
the relationship between βclf (the bias of learned classi-
fier in latent space) and λ (the regularization strength);

• In Appendix C, we present the additional results of bias
detection on real facial dataset to more intuitively show
why and how our approach works.

• In Appendix D, we present the implementation details.

Appendix A. Proof for theoretical justification

Proof: We first define the sample ratio of majority group
and minority group as pmaj = nmaj/(nmaj + nmin) and
pmin = nmin/(nmaj+nmin) respectively. The optimization
objective R(w) can be written as

R(w) =E(z,y)[log(1 + e−ywz)] + λ
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Without loss of generality, we let d = 1. Then we have

R(w) =pmaj

2
Ezy∼N(1,σ2

y),zs∼N(1,σ2
s)[log(1 + e−wyzy−wszs)]

+pmaj

2
Ezy∼N(−1,σ2

y),zs∼N(−1,σ2
s)[log(1 + ewyzy+wszs)]

+pmin

2
Ezy∼N(1,σ2

y),zs∼N(−1,σ2
s)[log(1 + e−wyzy−wszs)]

+pmin

2
Ezy∼N(−1,σ2

y),zs∼N(1,σ2
s)[log(1 + ewyzy+wszs)]

+λ
2
∣∣w∣∣22

=pmajEzy∼N(1,σ2
y),zs∼N(1,σ2

s)[log(1 + e−wyzy−wszs)]
+pminEzy∼N(1,σ2

y),zs∼N(1,σ2
s)[log(1 + e−wyzy+wszs)]

+λ
2
∣∣w∣∣22.

(7)

For convenience, we write Ezy∼N(1,σ2
y) and Ezs∼N(1,σ2

s) as
Ezy and Ezs respectively without causing any ambiguity.
Our goal is to minimize R(wy,ws). So we focus on the
gradients of classifier parameters wy and ws:
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We use proof by contradiction. Let w∗s be zero. Then we
have
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Note that Ezy [ 1

(1+ew∗yzy ) ] > 0, so that the ∇wsR(w∗y ,0) = 0
if and only if the majority group sample ratio pmaj = 1/2
(i.e., the data is unbiased). The above equation shows that
the solution w∗s cannot be zero. Similarly, we also have

∇wyR(0,w∗s) < 0. (11)



So the bias degree of the classifier βclf = ∣∣w∗s ∣∣/∣∣w∗y ∣∣ >
0 if the data is biased (i.e., β = pmaj => 1/2). Different
values of λ will scale the impact of the regularization term,
affecting the solution w∗ = (w∗y ,w∗s) of logistic regression.
Denote the solutions under regularization strength λ1 and
λ2 are w∗1 = (w∗y1,w∗s1) and w∗2 = (w∗y2,w∗s2) respectively.
As we have proven before, w∗y1, w∗s1, w∗y2, and w∗s2 are not
zero. Then we construct c∗1 = w∗y2/(w∗y2w∗s1 −w∗y1w∗s2) and
c∗2 = w∗y1/(w∗y2w∗s1 − w∗y1w∗s2) such that wcmb ∶= c∗1w

∗
1 −

c∗2w
∗
2 = [0,1]. Here we have completed the proof of the

existence of the optimal combination coefficients.

Appendix B. Observations on synthetic dataset
In this section, as an empirical supplement to Theorem 1,
we explore the relationship between βclf (bias of learned
linear classifier in the latent space) and λ (regularization
strength used in logistic regression) on synthetic dataset.
Experimental Setup. Following the previous studies [62],
we use the same settings as in the theoretical justification.
Specifically, target attribute y ∈ {1,−1} and spurious at-
tribute s ∈ {1,−1} are binary. The training dataset con-
tains n = 20000 samples, which can be divided into four
groups: two majority groups with s = y, each containing
nmaj/2 samples, and two minority groups with s = −y,
each containing nmin/2 samples. In the latent space of gen-
erative models, each group has its own distribution over la-
tent codes z = [zy,zs] ∈ R200 consisting of stable features
zy ∈ R100 generated from the target attribute y, and spuri-
ous features zs ∈ R100 generated from the spurious attribute
s: zy ∣ y ∼ N(y1, σ2

yI100) and zs ∣ s ∼ N(s1, σ2
sI100). To

get the classification boundary, we use logistic regression
with regularization strength λ. Recall that the bias degree
of the classifier as βclf = ∣∣w∗s ∣∣/∣∣w∗y ∣∣ ∈ [0,+∞). We set
different data bias by using different ratios nmaj ∶ nmin.
We also set different standard deviations for zy and zs. All
results were averaged over 100 random repetitions.
Observations. As shown in Table 6, in most cases, if we
increase the regularization strength λ in logistic regression,
the classifier bias βclf will be larger. This observation mo-
tivates us to design a simple but effective method to obtain
two different biased semantic directions in the latent space,
that is to set different regularization strength λ.

Appendix C. Additional results on real dataset
In response to the above findings, we show the images
edited by different semantic directions, obtained with dif-
ferent regularization strengths λ. The training dataset (sam-
pled from CelebA) is biased where the target attribute
Smiling is spuriously correlated with the spurious at-
tributes Female and Y oung. We first use a trained genera-
tive model to encode the images into latent codes. Then we
train linear classifiers in latent space using logistic regres-
sion with different λ. The semantic directions are normal

settings regularization strength λ
nmaj ∶ nmin σy σs 1 10 100 1000 10000

2:1

0.1 0.1 0.027 0.032 0.039 0.051 0.072
0.1 1.0 0.027 0.032 0.040 0.051 0.072
1.0 0.1 0.026 0.031 0.039 0.051 0.073
1.0 1.0 0.030 0.033 0.040 0.051 0.073

3:1

0.1 0.1 0.043 0.051 0.063 0.082 0.116
0.1 1.0 0.043 0.051 0.063 0.082 0.116
1.0 0.1 0.041 0.050 0.062 0.082 0.117
1.0 1.0 0.044 0.051 0.063 0.082 0.117

4:1

0.1 0.1 0.054 0.065 0.080 0.104 0.148
0.1 1.0 0.052 0.063 0.079 0.104 0.148
1.0 0.1 0.052 0.063 0.079 0.104 0.150
1.0 1.0 0.055 0.064 0.079 0.104 0.149

5:1

0.1 0.1 0.063 0.076 0.094 0.122 0.175
0.1 1.0 0.063 0.075 0.093 0.122 0.174
1.0 0.1 0.061 0.074 0.093 0.122 0.176
1.0 1.0 0.064 0.075 0.093 0.122 0.175

6:1

0.1 0.1 0.071 0.085 0.105 0.137 0.197
0.1 1.0 0.070 0.084 0.104 0.137 0.195
1.0 0.1 0.069 0.083 0.104 0.137 0.199
1.0 1.0 0.071 0.084 0.104 0.136 0.197

7:1

0.1 0.1 0.077 0.092 0.115 0.150 0.216
0.1 1.0 0.077 0.092 0.114 0.149 0.214
1.0 0.1 0.075 0.090 0.113 0.150 0.218
1.0 1.0 0.077 0.091 0.113 0.149 0.216

8:1

0.1 0.1 0.082 0.099 0.123 0.162 0.233
0.1 1.0 0.082 0.099 0.122 0.160 0.231
1.0 0.1 0.080 0.097 0.122 0.161 0.235
1.0 1.0 0.082 0.097 0.121 0.160 0.233

9:1

0.1 0.1 0.087 0.105 0.131 0.172 0.248
0.1 1.0 0.087 0.105 0.130 0.171 0.246
1.0 0.1 0.085 0.103 0.129 0.172 0.250
1.0 1.0 0.087 0.103 0.129 0.171 0.248

10:1

0.1 0.1 0.092 0.110 0.138 0.181 0.262
0.1 1.0 0.092 0.110 0.137 0.180 0.260
1.0 0.1 0.089 0.108 0.136 0.181 0.264
1.0 1.0 0.092 0.109 0.136 0.180 0.262

11:1

0.1 0.1 0.096 0.115 0.144 0.189 0.275
0.1 1.0 0.096 0.115 0.143 0.188 0.272
1.0 0.1 0.093 0.113 0.142 0.189 0.277
1.0 1.0 0.096 0.114 0.142 0.188 0.275

12:1

0.1 0.1 0.100 0.120 0.150 0.197 0.286
0.1 1.0 0.099 0.119 0.149 0.196 0.284
1.0 0.1 0.097 0.118 0.148 0.197 0.289
1.0 1.0 0.099 0.118 0.148 0.196 0.287

13:1

0.1 0.1 0.103 0.124 0.155 0.205 0.298
0.1 1.0 0.103 0.124 0.154 0.203 0.294
1.0 0.1 0.101 0.122 0.154 0.205 0.301
1.0 1.0 0.103 0.123 0.153 0.203 0.298

14:1

0.1 0.1 0.107 0.128 0.160 0.211 0.308
0.1 1.0 0.106 0.128 159 0.210 0.306
1.0 0.1 0.104 0.126 0.159 0.212 0.311
1.0 1.0 0.106 0.127 0.158 0.210 0.309

Table 6. Results of classifier bias βclf on synthetic dataset. Em-
pirically, in most cases, the classifier bias βclf will be larger, if we
increase the regularization strength λ in logistic regression.



vectors of the learned classification boundaries. As shown
in Figure 10, a larger λ produces a larger bias in direction,
resulting in a more obvious change in spurious attributes.

Appendix D. Implementation Details
For generative modeling, we utilize StyleGAN2 [32] for
generator and e4e [67] for encoder. We use HFGI [69] algo-
rithm to train generative models on training dataset with im-
age size of 256 for 30 epochs. The size of features encoded
by e4e is (18, 512), and we average over the channels to get
latent codes with size of 512. We use regularized logistic
regression to obtain directions, and the values of regulariza-
tion strength λ are 1e+4 and 1e-4 respectively. To get the
optimal combination coefficients, we perform grid search
and use CLIP [57] as a reference model. More details about
combination coefficients are shown in the next subsection.
For representation model, we use ResNet-18 [23] for en-
coder and the representation dimensions are 512. We train
the encoder for 135 epochs. We use Adam [36] as optimizer
with learning rate 3e-4. We set the editing range [αl,αu] as
[3,5]. For efficiency, we approximate the sampled degree
as an integer. To complete the classification, we fix the en-
coder and train a linear classifier with Adam until conver-
gence. The learning rate is 1e-2 with 1e-6 weight decay.
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Figure 10. Illustration of images edited by different semantic directions, which are trained with different regularization strength λ.


