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Summary
This document supplies further analysis and comparisons
of our method for comprehensive instructions. This addi-
tional content is structured as follows: Section 1 provides
more details on the module design, including asymmetric
backbone and improvement for SCI Transformer. Sections
2 and 3 present the visual and quantitative results on Fo-
cused Attention and additional SCI reconstruction results,
providing more evidence of the efficacy of our modules.

1. Further Analysis of Module Design
In this section, we provide a more detailed analysis of vari-
ous modules and some ablation experiment results.

1.1. Asymmetric Backbone for Hierarchical Mod-
ule

As shown in Fig. 1(a), when we use hierarchical modules
such as Swin attention in Unet, there is an effective non-
local information modeling capability but also some com-
putational burdens. To solve this problem, the proposed
asymmetric backbone utilizes the skip connection of Unet
to reduce computation without destroying the properties of
the hierarchy, as shown in Fig. 1(b). In the attention ab-
lation experiment of the main paper, we implement Swin
attention through the half-split operation in DAUHST[4]
and our asymmetric backbone respectively. The asymmetric
backbone’s effectiveness is evidenced by its superior per-
formance, reduced computation, and fewer parameters. An
ablation study under the setting of baseline-2 and Swin* in
the main paper, replacing the asymmetric backbone’s Swin
modules with basic modules, further supports this. Detailed
in Table 1, the results highlight the benefits of Swin atten-
tion in capturing non-local similarity and the function of the
asymmetric backbone in maintaining the hierarchy.

Table 1. Ablation Comparison of Different Modules.

Module PSNR SSIM Params (M) FLOPs (G)

All Basic 35.95 0.951 1.38 22.57

Basic+Swin 36.27 0.953 1.38 22.57

1.2. Multi-Pattern MLP (MPMLP)

In this section, we aim to illustrate the differences in neu-
ronal interaction between ordinary MLP and MPMLP as

Figure 1. Maintain the hierarchy by different backbones.

Figure 2. Neuronal Interaction in Different MLPs.

shown in Fig. 2. In vision transformers [6, 10], for input
X ∈ RN×C , the dimension of the middle feature in gen-
eral tow-layer MLP is set to 4C. Then we could get that
the parameters of MLP are 8C2 while that of MPMLP is
8C + 4C2. Thus, the computation complexity of MLP is
8NC2 while that of MPMLP is 8NC+4NC2. This means
that MPMLP almost halves the number of parameters and
computations when C ≫ 2 is the general case. To verify
this conclusion, we replace the MPMLP of DPU-5stg with
the ordinary tow-layer MLP. Other experimental settings are
the same as in the main paper and the results are reported in
Table 2. Better performance, less computational overhead,
and memory requirements demonstrate the effectiveness of
MPMLP.

Table 2. Ablation Study of MLPs.

Modules PSNR SSIM Params (M) FLOPs (G)

MLP 39.23 0.971 1.85 31.49

MPMLP 39.62 0.973 1.59 27.41

1.3. Improvement for SCI Transformer

In a normal transformer, the feature dimensions of Q,K are
the same as that of input X ∈ RN×C , which ensures the
accuracy of similarity. In the SCI transformers, the feature
dimension of X is expanded from the basic spectral data Λ
bands after downsampling, that is, C = kΛ, k ∈ {1, 2, 4}.
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Figure 3. Constructed images with Normal Attention (NA) and Focused Attention (FA) on KAIST.

Therefore, we consider that the effect of projecting X onto
the Q,K with Λ feature dimension to calculate the simi-
larity may not be worse than that of ordinary Q,K. Then
we simply verified this under the setting of baseline-2 and
Swin* in the main paper. The results are shown in Tab 3 and
WQ,WK ∈ RC×C are improved to WQ,WK ∈ RC×Λ in
our method, which could reduce the computation cost and
parameters in the SCI transformer with negligible perfor-
mance degradation.

Table 3. Ablation Comparison of Different Settings.

Modules PSNR SSIM Params (M) FLOPs (G)

Normal 36.27 0.953 1.44 23.51

Improved 36.21 0.953 1.38 22.57

2. The Visualization of Focused Attention (FA)

To intuitively show the advantages of FA, we visualize the
feature maps of the last Focued Attention Block (FAB) in
the first stage of DPU-5stg. As depicted in Fig. 3, the top
row shows the RGB images of the 10 scenes. The mid-
dle and bottom rows exhibit the feature maps with Normal
Attention (NA) and FA, respectively. We can see that the
feature maps with NA produce more blurred details and
distorted deformations and focus attention on less critical
backgrounds. In contrast, thanks to principal component
projection enlarging the attention weight of key features and
threshold filtering removing the attention of irrelevant com-
ponents, the feature maps with FA restore accurate textures,
complete shapes, and clear details, and focus more atten-
tion on objects that need to be reconstructed, which demon-
strates the effectiveness of FA.

3. More Comparison Results
3.1. Comparison with Model-based Methods

To further strengthen the evaluation, we add the comparison
with 3 model-based methods, i.e., TwIST[1], GAP-TV[13],
and DeSCI[9] here, and the results are shown in Table 4. As
we can see, DPU has significant performance advantages
over model-based approaches, which demonstrate the supe-
riority of the deep learning approach.

Table 4. Comparison with Model Methods.

Method TwIST[1] GAP-TV[13] DeSCI[9] DPU-5stg DPU-9stg

PSNR 23.12 24.36 25.27 39.62 40.52

SSIM 0.669 0.669 0.721 0.973 0.977

3.2. More Visual Comparison Results

Figs. 4-11 show more visual comparison results of the state-
of-the-art competing methods, including: HDNet [7], TSA-
Net [11], BIRNAT [5], and unfolding methods: DGSMP
[8], GAP-Net [12], DAUHST [4], and Transformer meth-
ods: MST [3], CST [2]. Constructed images with 4 out
of 28 spectral bands for other simulated and real scenes,
simulated ground truth, measurements, and RGB images
are shown for reference. It can be intuitively observed that
our DPU yields more detailed content, cleaner textures, and
fewer artifacts than the other competing methods. Mean-
while, compared with other unfolding methods, our DPU
requires the least single-stage parameters and computation
costs, demonstrating the effectiveness and efficiency of our
DPU method.
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Figure 4. Constructed images of real scene 2 with 4 out of 28 spectral channels by the state-of-the-art methods. Zoom in for a better view.

Measurement
DPU-3stgDAUHSTMSTTSA-Net DGSMP HDNet CSTGAP-Net

RGB Image

516.2nm

575.3nm

604.2nm

648.1nm

Figure 5. Constructed images of real scene 4 with 4 out of 28 spectral channels by the state-of-the-art methods. Zoom in for a better view.
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Figure 6. Constructed images of simulated scene 1 with 4 out of 28 spectral channels by the state-of-the-art methods. Zoom in for a better
view.
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Figure 7. Constructed images of simulated scene 2 with 4 out of 28 spectral channels by the state-of-the-art methods. Zoom in for a better
view.
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Figure 8. Constructed images of simulated scene 5 with 4 out of 28 spectral channels by the state-of-the-art methods. Zoom in for a better
view.
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Figure 9. Constructed images of simulated scene 6 with 4 out of 28 spectral channels by the state-of-the-art methods. Zoom in for a better
view.
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Figure 10. Constructed images of simulated scene 8 with 4 out of 28 spectral channels by the state-of-the-art methods. Zoom in for a better
view.
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Figure 11. Constructed images of simulated scene 10 with 4 out of 28 spectral channels by the state-of-the-art methods. Zoom in for a
better view.
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