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This supplementary material provides additional infor-
mation to complement our main paper. Sec. A outlines the
network architecture and training details of our approach.
Sec. B offers an overview of the datasets utilized in our re-
search. Sec. C presents extended ablation studies, encom-
passing various training data settings and further analysis
of component design. Sec. D features additional qualita-
tive comparisons between our model and existing state-of-
the-art methods. Finally, Sec. E summarizes our work, dis-
cusses its limitations, and proposes potential directions for
future research.

A. Implementation Details
Network Details Our model architecture comprises dis-
tinct sub-networks, each equipped with a Multilayer Per-
ceptron (MLP) layer for initializing hidden states, followed
by the Long Short-Term Memory (LSTM) networks. The
first two-layer LSTM network is designed for regressing the
pseudo-velocity of joints, and the second two-layer LSTM
network focuses on the final pose estimation. An additional
LSTM layer is used to extract global context from all six
sensors, which is shared by all three sub-networks. No-
tably, the output for each joint is represented as a global 6D-
rotation relative to the root joint [14], and this relational ap-
proach is also applied to intermediate pseudo-velocity pre-
dictions.

Specifically, we directly regress the orientations of 11
joints on the Xsens skeleton that lack IMU measurements.
To align with the SMPL model during evaluation (on DIP-
IMU) and visualization, we remove one redundant torso
joint (labeled as ’L3’ in our implementation) and map the
remaining predicted results. When integrating with the
DIP-IMU dataset, we duplicate the ’Spine1’ joint in the
SMPL model to correspond with our model’s output dimen-
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Datasets Motion types Subjects Minutes

DIP-IMU [6] jumping, sitting, walking, lifting arm 10 86
CIP [12] grabbing, reaching, sitting 10 288
Natural Motion [4] long time sitting, exercising, walking 17 692
Emokine [1] upper body motion 1 12
AnDy [10] walking, kneeling, manipulating loads 13 421
UNIPD [5] sitting, pointing, bending, walking and jogging 15 162

Real IMU data - - 1661
AMASS [9] - - 2122

Table 1. Dataset Overview

sions.
A difference from prior methodologies in our work is

the treatment of joints such as the head, root, forearms, and
forelegs, which are directly attached to IMUs. Rather than
predicting their orientations, we directly utilize the orienta-
tions provided by their respective IMU measurements, en-
suring a more straightforward and accurate representation.

B. Datasets Details

We use a subset of AMASS [9] to generate synthetic IMU
as previous works. Simultaneously, we train and evaluate
our model using several publicly available Xsens Inertial
Mocap dataset. The following part will briefly introduce
these public datasets we used.

1) AnDy [10]: The Inertial Mocap data from AnDy were
collected from 13 participants in an industry environment.
A total number of 195 trails consist of commonly seen mo-
tions like raising arms, walking, bending torso, crouching
and etc.. We use the last two subject’s data (ID: 9266 and
9857) for evaluation and the others for training.

2) CIP [12]: The sensing data of the CIP dataset were
collected from 10 participants for 6 different types of move-
ment sequences. These sequence types involve motions
such as factory assembly tasks, office dynamics and ran-
dom free movements. We select data from the subject 4 and
8 for evaluation and the rest data for training.

3) Natural Motion [4]: The dataset consists of motions
from 17 participants, with 13 performing unscripted daily
activities like walking, working at a computer, exercising,
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DIP IMU AnDy UNIPD CIP Natural Motion

SIP Err(°) Ang Err(°) SIP Err(°) Ang Err(°) SIP Err(°) Ang Err(°) SIP Err(°) Ang Err(°) SIP Err(°) Ang Err(°)

1)AMASS 23.80 8.25 20.80 7.72 14.98 5.64 25.27 9.08 40.58 13.56
2)AMASS+DIP 14.41 5.90 18.79 8.10 14.29 5.49 18.65 7.51 20.72 9.26
3)Xsens 17.62 8.33 8.93 3.45 7.29 2.77 11.42 4.54 15.78 7.18
4)Xsens+DIP 13.67 5.83 9.17 3.56 7.60 2.83 11.67 4.63 18.88 8.03
5)AMASS+Xsens+DIP 13.77 5.92 8.84 3.42 7.08 2.67 12.01 4.66 19.89 8.39

Table 2. Performance Comparison on Different Training Data Settings.

DIP IMU AnDy UNIPD CIP Natural Motion

SIP Err(°) Ang Err(°) SIP Err(°) Ang Err(°) SIP Err(°) Ang Err(°) SIP Err(°) Ang Err(°) SIP Err(°) Ang Err(°)

①Baseline 15.26 6.17 9.89 3.76 9.05 3.24 13.18 5.13 33.22 11.20
②w/o Part 14.97 6.02 9.62 3.85 7.63 2.92 13.00 4.86 31.62 9.60
③w/o Vel 14.87 6.11 9.27 3.50 7.61 2.81 12.54 4.89 29.15 10.49
④CP 14.64 6.35 10.74 4.14 7.54 2.88 12.52 4.87 20.58 7.90
⑤DynaIP* 13.67 5.83 9.17 3.56 7.60 2.83 11.67 4.63 18.88 8.03

Table 3. Performance Comparison of Ablation Variants.

etc., and the remaining 4 executing actions within industrial
settings. Notably, an essential characteristic of this dataset
is the exceptional duration of each raw capture sequence,
varying from half an hour up to three hours. This allows
for a wealth of extended long-time sitting or standing se-
quences to be incorporated. Nevertheless, we find some raw
data may exhibit certain drift due to prolonged capture times
and lack of precise re-calibration. We manually selected 9
(ID: 1, 2, 3, 4, 5, 6, 10, 11 and 13) out of the 13 partic-
ipants engaged in daily activities and extracted clean data
segments to be utilized for training and testing.

4) Emokine [1]: This dataset contains 63 sequences cap-
tured from a dancer performing different body movements
with emotions like anger, contentment, fear, joy, neutrality,
and sadness, this includes a variety of rapid and slow move-
ments of the upper and lower limbs. Since the total duration
of this data only amounts to 12 minutes, we have decided to
use it solely for training purposes.

5) UNIPD [5]: This dataset captures detailed body poses
from 15 participants performing 12 scripted activities in la-
borious environment, such as walking, sitting, jogging and
bending. We use data from last two subjects (ID: 14 and 15)
as test set and the rest for training.

The overview of these dataset along with DIP-IMU [6]
is shown in Tab. 1

C. Additional Analysis

In this section, we present more experimental results of our
proposed method (DyanIP).

Additional Comparison on Unified Mocap Data and
Virtual-to-Real (V-to-R) Training Scheme. We extend
our analysis by including results from the Xsens test set for
the four training settings previously discussed in Sec. 4 on

Figure 1. CDF of the largest upper leg orientation error. Complete
partition model predicts unnatural result for excessive separation.

more real mocap datasets. Additionally, we report a extra
setting marked as model 5): AMASS+Xsens+DIP. This set-
ting involves pretrain on AMASS synthetic data and then
retrain with a mix of Xsens and DIP-IMU data.

The findings, as shown in Tab. 2, reveal that relying
solely on AMASS (model 1)) leads to subpar performance
in real-world scenarios. Fine-tuning with a smaller real
dataset, such as DIP-IMU, offers limited improvements
(model 2)).

A notable observation is that the performance of mod-
els 4) and 5) is quite similar, indicating that pre-training
on AMASS does not significantly affect the outcome. This
similarity may stem from the test set’s focus on everyday
motions, which are well-represented in the current real-
world training data. However, the gap between virtual and
real IMU data remains a concern and could be further inves-
tigated. Virtual data’s potential may lie in capturing more
diverse and uncommon motions, such as those found in
sports like basketball, swimming, parkour, or specific dance
styles, which are not adequately covered by existing real
datasets.

Additional Ablation Study. We show the comparison
results of ablation models on more datasets in Tab. 3. Along
with aforementioned variants (①, ②, ③), We additionally



Figure 2. Additional qualitative results on DIP-IMU with previous virtual-to-real SOTAs. From left to right: TIP [8], PIP [15], DynaIP and
GT.

Figure 3. Additional visualization when models all trained using Xsens mocap data. Left: results from CIP sequence, Right: results from
Natural Motion sequence.

evaluate a variant of our model denotes as ”④ Complete par-
tition (CP)”, which further divides body into left and right
sides: four limb groups and one torso group, as it is inter-
esting to examine whether more local parts can bring better
performance.

The results, detailed in Tab. 3, demonstrate that Dy-
naIP* maintains the best overall performance on the most

test set, particularly on the DIP-IMU, Natural Motion, and
CIP datasets. These datasets include more complex motion
scenarios, where the unique benefits of pseudo-velocity es-
timation and part-based modeling are most evident.

In our experiments, the complete partition model,
marked as ④, reveals a subtle decline in SIP error perfor-
mance, as indicated in Tab. 3. Additionally, we present



Dataset Method SIP Err(°) Ang Err(°) Pos Err(cm) Mesh Err(cm)

DIP IMU PIP 15.02 8.73 5.04 5.95
DynaIP† 14.11 7.00 4.97 5.97

Total
Capture

PIP 12.93 12.04 5.61 6.51
DynaIP† 12.42 11.06 5.11 5.79

Table 4. The performance comparison on DIP-IMU and Totalcap-
ture. DynaIP† ia trained on AMASS and DIP-IMU, same as PIP.
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(a) DynaIP*
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(b) DynaIP*-Position
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(c) PIP-official

Figure 4. Visualization of first linear layer weights, Accs on
marked cols while the rest are Oris. (PIP Accs on col 0 to 17)

the Cumulative Distribution Function (CDF) of the largest
orientation error between the two upper legs on the Nat-
ural Motion test set in Fig. 1. While the introduction of
more sensors and joint groups theoretically enhances the
model’s capacity to capture local motion information, over-
segmentation of the body into numerous parts may inadver-
tently compromise the inter-connectivity between the sub-
networks. This disconnect is not entirely compensated by
the incorporation of low-dimensional global context. As a
result, this can lead to inconsistencies in the pose estimates,
manifesting as increased errors in complex motions, as de-
picted in Fig. 1. Our observations suggest that while seg-
menting the body into local parts enhances local correlation,
an excessive division may inadvertently weaken the model’s
ability to maintain global coherence, thus impacting its per-
formance negatively in certain challenging scenarios.

Additional Comparison on Model performance. To
isolate data impact and assess model performance, we pro-
vide a additional comparison with our model marked as
DynaIP† using a data set consistent with PIP (combined
with AMASS and DIP data) in Tab. 4. The performance
enhancement highlights our architecture’s efficiency.

D. Additional Qualitative Results
In this section, We show more visualization results of our
method compared to the state-of-the-art methods

Additional Qualitative Comparison with the V-to-R
SOTAs. We present a comprehensive qualitative compar-
ison between our method, DynaIP*, and previous state-
of-the-art models using virtual-to-real (V-to-R) training
scheme, such as TIP [8] and PIP [15]. Additional frames
from the DIP-IMU dataset are visualized in Fig. 2, where
our approach, DynaIP*, displays marked improvements
over the previous V-to-R models in various situations, high-
lighting the advantages of incorporating real inertial mocap
data.

This comparison points out that past V-to-R models
mainly focused on real IMU datasets with SMPL ground
truths. As a result, the proportion of ’real’ components in
these models was limited, which constrained their overall
performance. By contrast, as shown in Fig. 2, our approach
is built on a wide array of real inertial data, which enhances
the model’s adaptability and precision across various mo-
tion contexts.

Additional Qualitative Comparison on network
structure. This visualization presents a deeper qualitative
analysis that compares the performance of our model, Dy-
naIP, with state-of-the-art models (TIP [8] and PIP [15])
trained solely on Xsens data. In Fig. 3, we exhibit more in-
stances to highlight the enhanced capabilities of our model.

On the left side of the image, DynaIP’s shows better abil-
ity to capture the movements of the upper leg and arm. This
precision can be attributed to our model’s advanced network
structure, which effectively integrates dynamic motion in-
formation and spatial correlations within the body.

Turning to the right side of the image, our model demon-
strates its robust in tracking a sitting pose, even when it in-
volves complex hand movements. This scenario often poses
a challenge for other models due to their limited capacity in
localized region modeling. However, DynaIP’s part-based
approach allows for a more focused and accurate interpre-
tation of motions within each region.

Effect of using velocity as intermediate outputs. Pre-
vious works, such as DIP, identified a trend where networks
tend to discard much of the acceleration, and introduced an
auxiliary task to reconstruct the acceleration for alleviating
this problem. To better utilize acceleration, we first regress
the pseudo velocity as an intermediary output, supervised
by the ground-truth velocity obtained from the human pose.
Compared with PIP/Transpose that uses leaf joints positions
as intermediate outputs, our method has certain advantages
in terms of using acceleration. Since noise in acceleration
easily diverges with quadratic integration, it’s more difficult
to capture the spatial relationship in noisy acceleration. In-
stead, the network learns to infer the position more from
the orientation input due to human kinematic relationship.
Following DIP’s explanation, we visualize the weights of
the first linear layer of the network in the Fig. 4, where both
the weights of PIP and ours-w.position in the corresponding
dimension of the acceleration input is almost zero.

Tracking robustness of long-time sitting motion. In
assessing the robustness of our model, DynaIP, particularly
in prolonged motion scenarios, we conducted a qualitative
analysis using a real sitting sequence from the Natural Mo-
tion dataset. This sequence, lasting for 14 minutes, is show-
cased in Fig. 5 and exemplifies the model’s capability in
long-time motion tracking.

The accurate modeling of a real seating posture is no-
tably challenging. It entails not only managing the inherent



Figure 5. We’ve selected four timestamps with relatively high up-
per leg orientation errors from a 50,000 frame sitting sequence and
have visualized their respective mesh representations with ground
truth.

noise in IMU readings but also addressing the subtle and
occasional body movements humans exhibit in unscripted
situations, as opposed to a perfectly stationary posture. Our
model’s part-based approach plays a crucial role in its suc-
cess in this context.

Furthermore, to reinforce our findings and demonstrate
the practical applicability of our model, we have also evalu-
ated DynaIP in real-world scenarios using an inertial mocap
device. Please refer to the supplementary videos for more
details.

E. Discussions and Future Works
To our knowledge, we are the first to utilize pre-existing
publicly available inertial mocap datasets in learning-based
sparse inertial mocap with the global orientation mapping
strategy across skeleton formats. Despite our efforts to
expand the training data with real IMU readings, we ac-
knowledge a challenge: the model’s accuracy dips when it
encounters poses that are underrepresented in the training
set. To address this, we recognize the potential of integrat-
ing additional datasets featuring real IMUs, which cover a
broader spectrum of motion types. Recently, there comes
several multi-modality datasets such as [2, 3] that make ex-
tensive use of IMU data as part of their sensor modality. Re-
grettably, raw IMU data synchronized with these resources
aren’t presently available for public access. We are of the
strong belief that, once made available, these datasets could
offer immense value for inertial sensor-based motion cap-
ture.

At present, our system does not incorporate improve-
ments in global root translation and operates based on the
assumption of flat ground conditions. This limitation stems
from the inherent tendency of purely inertial-based global
trajectory estimation methods to experience drift. Addi-
tionally, the accuracy of our current methods for estimat-
ing translation can be adversely impacted by inaccuracies
in pose prediction, a problem also linked to the suscepti-
bility of inertial-based systems to drift. Looking ahead, we
aim to tackle the issue of long-term drift in IMU-based so-
lutions by integrating environmental constraint information
or by incorporating additional sensor modalities.

In summary, our research points towards exciting av-
enues for future work in sparse IMU-based human pose es-
timation. Expanding the dataset diversity, dividing distinct
body regions, and enhancing velocity estimation are key ar-
eas that hold the potential to advance this field significantly.
As we continue to explore these possibilities, we would also
be committed to using widely used smart devices containing
IMUs, such as VR [7, 13], mobile phones, smart-watches
[11], etc., to develop robust and accurate motion capture
solutions that can thrive in a variety of real-world applica-
tions.
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