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numbering as those in the main paper.

1. Schematic Overview
Fig. 4 illustrates graphically the deficiencies of existing
audio-visual speech representation learning techniques and
the merits of our newly proposed ES3, which acquires
unique, shared and synergistic information in an evolving
learning process.
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Figure 4. A schematic overview of existing techniques and
our proposed strategy, ES3. Existing methods mostly focus
on bootstrapping visual and audio-visual representations from au-
dio, leading to inadequate learning of visual-unique and synergis-
tic information (see main text). Left: (a) AV-HuBERT [59], u-
HuBERT [30] & VATLM [80]. (b) AV2vec [76]. (c) RAVEn [27].
(d) AV-data2vec [34]. Right: (e) our proposed strategy, ES3. Let-
ters in lighter shades represent masked versions of the specified
modality. Arrowheads on solid lines point towards the teachers
(or targets) providing the (self-)supervision signals. A: audio; V:
video; T: text; cont.: contrastive loss; CE: cross-entropy loss;
EMA: exponential moving average updates.

2. Datasets
LRS2-BBC. The LRS2-BBC dataset (224h) is officially
divided into four parts: a pre-train set (195h), a train
set (28h), a development set (0.6h), and a test set (0.5h).
The validation and test sets contain 1, 082 and 1, 243 utter-
ances, respectively. The difference between the pre-train
and train sets is that the former contains longer sentence
excerpts while the latter only contains sentences clipped to
100 characters or 10 seconds.

CAS-VSR-S101. We collect a new large-scale, in-the-
wild Mandarin dataset, CAS-VSR-S101 with 101.1 hours

of data. The videos are sourced from broadcast news and
conversational programs in Chinese, covering a highly di-
verse set of topics, speakers and filming conditions. The
lengths of the utterances are naturally distributed between
0.01s and 10.57s, and image qualities and resolutions vary.
News accounts for 82.4% of the programs. 70.4% of the
utterances depict news anchors, hosts and correspondents,
while 29.6% are those of interviewees and guests. In addi-
tion, at a ratio of approximately 1.5 : 1, male and female
appearances are relatively balanced. It is divided into train,
validation and test sets by TV channels to minimize speaker
overlap, and at a ratio of roughly 8 : 1 : 1.5 in terms of dura-
tion. The validation and test sets are composed of programs
broadcast on provincial TV channels. A random visual sam-
ple of the dataset can be found in Fig. 5. The dataset is
available for academic use under a license3.

Figure 5. A random sample of extracted mouth regions-of-
interest from CAS-VSR-S101. Our dataset is highly diverse in
terms of speaker identity, visual conditions and image quality.

3. Implementation Details

Pre-processing. 80-dimensional log-Mel filter-bank fea-
tures are extracted on-the-fly from 16kHz audio using the

3Please direct your inquiries to lipreading@vipl.ict.ac.cn.
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kaldifeat package4. Similar to prior work, a 96 × 96
grayscale crop centered on the speaker’s mouth is ex-
tracted from each frame based on pre-computed facial land-
marks [13] after Procrustes-based registration to a canoni-
cal face template with a similarity transformation. The re-
sulting crops are normalized to [0, 1] with mean 0.45 and
variance 0.225. All utterances longer than 15 seconds are
segmented by silence or word boundary and batched dy-
namically by length to minimize padding.

Training details. For the Transformer encoder, there are
two choices in terms of number of layers, hidden dimension
and feedforward layer dimension: BASE (12/768/3072)
and LARGE (24/1024/4096) [22, 71]. Following [27],
a smaller version of BASE (12/512/2048, denoted by
BASE*) that is suitable for fast prototyping is used by de-
fault for LRS2-BBC and CAS-VSR-S101. We implement
our models with PyTorch [48], PyTorch Lightning and
FlashAttention-2 [20, 21]. We train all models using
Automatic Mixed Precision (AMP) with the AdamW op-
timizer [37] with β = (0.9, 0.98) and weight decay of 10−6

on servers with 8 GPUs (Geforce RTX 4090, NVIDIA A40
or A100 PCIe 40G). We use a cosine learning rate sched-
uler, warming up linearly for the first 30% of the training
up to a maximum learning rate of 0.0005 (BASE & BASE*)
/ 0.0002 (LARGE) and decaying thereafter. We tune the
maximum number of frames in a batch to fit on different
devices; a typical setup is 6400/9600 frames (256/384s)
per device for pre-training and fine-tuning on 8×A100 40G.
The number of masked input copies is set to 8 for the first
stage, and 2 for the rest due to GPU memory constraints.
The margin m in Eq. (12) is set to −0.2 [47]. Learnable
temperatures τ are initialized to 0.07 and clipped to a min-
imum of 0.01. The codebook has Q = 256 codewords,
and the codebook decay rate τcode is set to 0.9. We set the
number of target layers N to 8 for BASE and BASE* mod-
els [36], and 16 for LARGE models. During pre-training, we
perform data augmentation in the form of horizontal flip-
ping and random cropping to 88 × 88 consistently applied
to all frames. A central crop is taken during evaluation. Fil-
ter banks are masked with a fixed random embedding, and
video by random substitution with frames from the same
segment [59]. Mask ratio is simply set to M = 50% for all
input modalities and stages. We use LayerScale [69] with
ε = 0.1 following [27] and LayerDrop [23] with per-layer
probability p = 0.05 following [59]. For the audio inputs,
we apply SpecAugment [46] in the frequency domain, with
a maximum masking range of 40 filter-banks. We also apply
adaptive time masking [27, 40] with a probability of 0.2 and
mean duration of 0.2s per second to both audio and video
using the fixed random embedding and zeros, respectively.
We fine-tune for 75 epochs under a high-resource setup, and

4https://github.com/csukuangfj/kaldifeat

50 epochs under a low-resource setup. We pre-train for 30k
steps per stage and fine-tune for 50 epochs on CAS-VSR-
S101. We do not freeze any layers during fine-tuning.

We want to reemphasize that none of the aforementioned
hyperparameters are associated with modality balancing
(e.g. modality input schedule, modality dropout, asymmet-
ric mask ratios for the two modalities). Moreover, they are
either directly taken from existing literature or chosen em-
pirically without further tuning. The only exception is
the fine-tuning learning rate, which we do find to be influ-
ential on downstream performance and therefore tune sep-
arately for VSR, ASR and AVSR. However, it is important
to note that tuning the learning rate is a standard procedure
in any neural network training. Despite the limited tuning
performed and adopting the simple LF-MMI criterion with-
out external language models for decoding, our results ei-
ther match or rival the state-of-the-art performance on the
evaluated datasets. We firmly believe that this alleviation in
the burden of parameter tuning will prove invaluable to the
community.

4. Low- and High-Resource Results for LRS2-
BBC and LRS3-TED

In this section, we present more comprehensive results on
LRS2-BBC and LRS3-TED with more existing works listed
for comparison, as well as numbers obtained by decoding
with larger external language models, which we unfortu-
nately could not fit into the main text due to page limits.

4.1. Decoding with External Language Models

External language model for LRS2-BBC. For LRS2-
BBC, we collect an in-house British TV program cor-
pus coming from the same domain as LRS2-BBC totaling
117.4M words. Each sentence has a minimum of 4 words
and a maximum of 100. The texts have been filtered by
checking for overlap with the LRS2-BBC development and
test sets. We then construct an external language model by
combining dataset transcripts with the corpus.

External language model for LRS3-TED. For LRS3-
TED, we leverage the TED-LIUM 3 corpus [29] transcripts
with 4.9M words. We aggressively filter the text by check-
ing for overlap with the LRS3-TED development and test
sets. The perplexities of the language models constructed
from the expanded textual corpora and the original LRS2-
BBC and LRS3-TED datasets are provided in Tab. 6.

Decoding. With LF-MMI training, we follow common
practice and perform HLG decoding with beam search on
a 3-gram decoding graph, using a fixed beam size of 50.
For English datasets, we additionally re-score the lattice us-
ing a 4-gram language model (trained on the same dataset).

https://github.com/csukuangfj/kaldifeat


Corpora LRS2-BBC LRS3-TED
3-gram 4-gram 3-gram 4-gram

Dataset Only 218.15 211.66 197.54 191.80
Expanded 222.53 204.20 150.66 134.17

Table 6. Perplexities of our n-gram language models for LRS2-
BBC and LRS3-TED. The numbers are computed on the corpora
used to train the respective language models.
We tune language model scale among {0.1, 0.2, . . . , 2.0}
and word insertion penalty among {0, 0.5, . . . , 5.0} on the
validation sets. Note that this is done automatically through
a quick grid search and considered common practice when
evaluating CTC-like models following speech representa-
tion pre-training [10, 56].

4.2. Complete Comparison

As can be seen in Tabs. 7 to 9, decoding with a larger
external language model leads to significant performance
improvements and even SoTA results, especially for VSR,
where the external LMs improve WER by about 2%. For
ASR and AVSR, on LRS3-TED, we observe that with the
external LM our low-resource models can be as good as
a high-resource model without external LM. We therefore
expect similar better performance if we move to a more
complex Encoder-Decoder model, which is known to build
strong internal language models, or hybrid CTC+CE mod-
els. Finally, it is worth noting that with a strong exter-
nal LM, we observe diminishing returns by scaling up the
Transformer on LRS3-TED under a high-resource setup,
particularly for VSR and AVSR. As mentioned in the main
text, this points to the limited modeling capacity of our
lightweight visual encoder φv . Adopting more complex
modeling architectures can be explored in future work.

4.3. Analysis of VSR Transcription Errors

We provide a few examples of VSR errors on LRS2-BBC in
Tab. 10. The quality of the transcriptions clearly improve as
we scale up the model and include external language mod-
els. Interestingly, the BASE* model pre-trained on 223h of
in-domain LRS2-BBC data decoded the last sentence better
than the 433h LRS3-TED pre-trained BASE model, which
we believe is due to a slight mismatch in terms of content
and pronunciation habits (British vs general English).

5. Ethical Considerations
Our work involves audio-visual human speech, which raises
ethical considerations regarding privacy and potential mis-
use of these models. We acknowledge these issues and em-
phasize the need for responsible data use and ethical con-
siderations in the development and deployment of systems
built on our work. The datasets that we use in this work
are either publicly available or datasets that are licensed for
academic use.



Table 7. Results on LRS2-BBC. We pre-train a BASE* model with 223h unlabeled data from LRS2-BBC, as well as BASE and LARGE

models with 433h unlabeled data (LRS3-TED) to demonstrate scaling properties. †: test-time augmentation. ∗: external language models.

Methods Unlabeled AV data Labeled Data Encoder Size Criterion VSR ASR AVSR
Supervised

Afouras et al. [3]†∗ - 1519h 71M CE 48.3 9.7 8.5
Yu et al. [75] - 1519h - LF-MMI1 48.9 6.7 5.9

- 223h 39.1 4.3 4.2Ma et al. [39]∗ - 380h 79M CTC+CE 37.9 3.9 3.7
- 223h 32.9 - -
- 380h 28.7 - -Ma et al. [40]∗

- 818h
79M CTC+CE

27.3 - -
Prajwal et al. [52]†∗ - 698h 32M CE 28.9 - -
Ma et al. [41]∗ - 818h 186M CTC+CE 27.9 2.6 -

Semi-supervised
Afouras et al. [2]∗ 777h 223h2 - CTC 51.3 - -
Ma et al. [40]∗ 641h 818h 79M CTC+CE 25.5 - -
Prajwal et al. [52]†∗ 1204h3 1472h 32M CE 22.6 - -
Ma et al. [41]∗ 2630h 818h 186M CTC+CE 14.6 1.5 1.5

Self-supervised (BASE and BASE* models)
AV-HuBERT [59, 60] 1759h 223h 103M CE 31.24 - 3.64

VATLM [80] 1759h5 223h 107M CE 30.6 - 2.9
RAVEn [27] 433h 223h 97M CTC+CE 32.1 3.9 -
Pan et al. [45] -6 380h 399M CTC+CE 43.2 2.7 2.6

223h 28h 46M 40.2 (39.1) 6.0 (5.0) 5.7 (4.9)
433h 28h 102M 39.3 (38.2) 5.5 (4.8) 5.1 (4.1)
223h 223h 46M 31.4 (30.3) 4.3 (3.6) 3.8 (2.9)ES3 (ours)

433h 223h 102M

LF-MMI

30.7 (29.8) 3.4 (3.0) 3.2 (2.4)
223h 28h 46M 38.0 (36.5) 4.5 (3.8) 4.3 (3.5)
433h 28h 102M 37.1 (35.8) 4.4 (3.6) 4.1 (3.3)
223h 223h 46M 29.3 (28.0) 3.4 (2.5) 3.0 (2.3)ES3 (ours)∗

433h 223h 102M

LF-MMI

28.7 (27.6) 3.0 (2.2) 2.8 (1.9)
Self-supervised (LARGE models)

433h 28h 317M 36.4 (35.4) 5.2 (4.4) 4.7 (4.0)ES3 (ours) 433h 223h 317M LF-MMI 26.7 (25.8) 3.1 (2.5) 3.1 (2.5)
433h 28h 317M 35.0 (33.9) 4.0 (3.1) 3.8 (3.0)ES3 (ours)∗ 433h 223h 317M LF-MMI 24.6 (23.7) 2.5 (1.9) 2.4 (1.8)

AV-HuBERT [59, 60] 1759h 223h 325M CE 25.54 - 2.54

VATLM [80] 1759h5 223h 332M CE 24.3 - 2.3
RAVEn [27] 1759h 223h 671M CTC+CE 23.2 2.5 -

1 Not end-to-end; requires a GMM-HMM alignment stage.
2 Uses an additional ASR model trained on LibriSpeech (960h).
3 We consider the TEDxext dataset to be unlabeled, since the automatic captions have not gone through additional verification.
4 Reproduced by Zhu et al. [80].
5 Uses additional 3846h audio, 452h audio-text and 600M text data.
6 Uses additional 60000h audio data and 1.28M unlabeled images.



Table 8. Low-resource results on LRS3-TED. We pre-train a BASE and LARGE model with 433h unlabeled data. ∗: uses external
language models.

Methods Unlabeled AV data Labeled Data Encoder Size Criterion VSR ASR AVSR
Self-supervised (BASE models)

AV-HuBERT [59, 60] 433h 30h 103M CE 51.8 4.9 4.71

VATLM [80] 433h2 30h 107M CE 48.0 - 3.6
RAVEn [27] 433h 30h 97M CTC+CE 47.0 4.7 -
AV2vec [76]3 433h 30h 103M CE 45.0 - 5.8
AV-data2vec [34] 433h 30h 103M CE 45.2 4.4 4.2
ES3 (ours) 433h 30h 102M LF-MMI 45.5 (44.7) 3.9 (3.3) 3.6 (3.0)
ES3 (ours)∗ 433h 30h 102M LF-MMI 43.9 (43.2) 3.0 (2.4) 2.8 (2.1)

Self-supervised (LARGE models)
AV-HuBERT 433h 30h 325M CE 44.8 4.5 4.21

AV-data2vec 433h 30h 325M CE 40.5 3.7 3.4
ES3 (ours) 433h 30h 317M LF-MMI 43.5 (42.5) 3.8 (2.9) 2.9 (2.3)
ES3 (ours)∗ 433h 30h 317M LF-MMI 41.6 (40.7) 2.7 (2.1) 2.3 (1.7)

1 Reproduced by Lian et al. [34].
2 Uses additional 3846h audio, 452h audio-text and 600M text data.
3 Zhang et al. [76] inject noise during pre-training, leading to better fine-tuning results even with its base model AV-HuBERT (47.1%).

Table 9. High-resource results on LRS3-TED. We fine-tune on 433h labeled data of LRS3. †: uses test-time augmentation. ∗: uses
external language models. ‡: noise injection during pre-training.

Methods Year Unlabeled AV data Labeled Data Backbone Encoder Size Criterion VSR ASR AVSR
Supervised

Afouras et al. [3]†∗ 2018 - 1519h Transformer 71M CE 58.9 8.3 7.2
Xu et al. [74] 2020 - 590h RNN - CE 57.8 7.2 6.8
Ma et al. [39]∗ 2021 - 595h Conformer 79M CTC+CE 43.3 2.3 2.3
Prajwal et al. [52]†∗ 2022 - 698h Transformer 32M CE 40.6 - -

- 438h 37.9 - -
- 595h 35.1 - -Ma et al. [40]∗ 2022
- 818h

Conformer 79M CTC+CE
34.7 - -

Semi-Supervised
Shillingford et al. [62]∗ 2019 - 3886h RNN - CTC 55.1 - -
Makino et al. [42] 2019 - 31kh RNN 43M Transducer 33.6 4.8 4.5
Afouras et al. [2]∗ 2020 344h 433h1 Jasper (CNN) - CTC 59.8 - -
Serdyuk et al. [57] 2021 - 90kh Transformer - Transducer 25.9 - 2.3
Ma et al. [40]∗ 2022 641h 818h Conformer 79M CTC+CE 31.5 - -
Prajwal et al. [52]†∗ 2022 1204h2 1472h Transformer 32M CE 30.7 - -
Serdyuk et al. [58] 2022 - 90kh Conformer - Transducer 17.0 1.6 1.6
Ma et al. [41]∗ 2023 2630h 818h Conformer 186M CTC+CE 19.1 1.0 0.9
Chang et al. [15] 2023 - 100kh Conformer 98M Transducer 12.8 - 0.9

Self-supervised (Base Models)
AV-HuBERT [59, 60] 2022 433h 433h Transformer 103M CE 44.0 3.0 2.83

AV2vec [76]‡ 2023 433h 433h Transformer 103M CE 39.9 - 2.6
RAVEn [27] 2023 433h 433h Transformer 97M CTC+CE 39.1 2.2 -
ES3 (ours) 2023 433h 433h Transformer 102M LF-MMI 40.3 (39.2) 2.9 (2.4) 2.5 (2.0)
AV-data2vec [34] 2023 433h 433h Transformer 103M CE 39.0 2.0 1.8
ES3 (ours)∗ 2023 433h 433h Transformer 102M LF-MMI 37.9 (37.0) 2.5 (1.9) 2.0 (1.4)

Self-supervised (Large Models)
AV-HuBERT [59, 60] 2022 433h 433h Transformer 325M CE 41.6 2.7 2.53

AV-data2vec [34] 2023 433h 433h Transformer 325M CE 37.4 1.9 1.7
ES3 (ours) 2023 433h 433h Transformer 317M LF-MMI 37.1 (36.7) 2.8 (2.1) 2.1 (1.7)
ES3 (ours)∗ 2023 433h 433h Transformer 317M LF-MMI 37.7 (37.1) 2.4 (1.9) 2.1 (1.6)
1 Uses an additional ASR model trained on LibriSpeech (960h).
2 We consider the TEDxext dataset to be unlabeled, since the automatic captions have not gone through additional verification.
3 Reproduced by Lian et al. [34].



Model Transcription

Ground Truth sort of second half of october
LR, BASE*, 223h should have sent out for october
HR, BASE*, 223h so you’ve set up of october
HR, BASE, 223h so you’ve sent of october
HR, BASE, 223h, + extLM sort of sendoff october
HR, LARGE, 223h, + extLM sort of second half of october

Ground Truth it’s not all about size
LR, BASE*, 223h it’s not all about size
HR, BASE*, 223h it’s not all about starts
HR, BASE, 223h it’s not all about stars
HR, BASE, 223h, + extLM it’s not all about stars
HR, LARGE, 223h, + extLM it’s not all about size

Ground Truth the garrison tried to surrender before he could try out his new toy
LR, BASE*, 223h the garrison tried to surrender before he can try out his new toy
HR, BASE*, 223h the garrison tried to surrender before he could try out a new toy
HR, BASE, 223h the garrison tried to ventilate before he can try out his new toy
HR, BASE, 223h, + extLM the carringtons tried to regulate before he could try out his new toy
HR, LARGE, 223h, + extLM the garrison tried to surrender before he could try out his new toy

Table 10. VSR Transcription errors. Green: correctly recognized words; Red: substitution errors; Blue: deletion errors.
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