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Overview

In the supplementary material, we first provide more ab-
lation studies (in Sec. A.1) and visualization results (in
Sec. A.2). The implementation details for the experiments
on SSv2 and K400 are presented in Sec. A.3.

A. Appendix

A.1. Ablation Studies

Hyper-parameter α. To validate the flexibility of input
frames in the temporal pathway, we conduct the experi-
ments of varying the upsampling ratio α in Tab. 1a. It’s ob-
vious that the higher α can consistently improve the perfor-
mances, especially on temporally-heavy dataset SSv2 [4].
We assume this is because the more input frames contain
richer temporal dynamic information, facilitating the align-
ment with motion-enhanced descriptions. However, the
higher α can also bring up more computational cost (i.e.,
FLOPs). To achieve a better trade-off between computation
efficiency and prediction accuracy, we set α = 2 by default.

Top-k similar categories. The experiments in Tab. 1b ex-
plore the impact of different number of similar categories
in generating discriminative motion descriptions. It is ob-
served that, when applying more discriminative motion de-
scriptions (k = 1 −→ 5), we can achieve noticeable perfor-
mance improvement on both datasets, especially on SSv2
(+3.5%), with negligible additional computational costs.
However, comparing the performance with k = 5 and
k = 10, the performance gains are relatively minor. In this
work, we choose k = 5 for simplicity.

Motion encoder backbones. We apply the motion en-
coder in the temporal pathway to extract temporal dy-
namic information within the dense frames. In Tab. 1c,
we conduct experiments on different designs of motion
encoder, including the convolution-based R(2+1)D [13],
cross-frame attention-based X-CLIP [7], and joint spatio-
temporal attention-based VideoMAE [12]. The results re-
veal that: i) our framework is flexible and capable of inte-
grating with different temporal networks; ii) our customized
motion encoder achieves a relatively better performance. X-
CLIP mainly focuses on the global long-term temporal in-
formation between frames, while VideoMAE mainly learns
the dependencies between tokenized 3D cubes [12]. In con-
trast, our motion encoder has the capacity to simultaneously
learn the global cross-frame dependencies between image
features and the local key region interactions.

A.2. Visualization Cases

In Fig. 1, we show the confusion matrices for SSv2 classi-
fication using the models trained with/without the motion-
enhanced descriptions. We select the categories containing
similar sentence semantics, which are started with “Pushing
something” or “Pulling something”. Specifically, without
motion-enhanced descriptions, the model is confused to dif-
ferentiate the classes with fine-grained motions, two of them
correspond to “Pulling something from behind of some-
thing” and “Pulling something out of something”. These
two categories have the same action of “pulling”, but differ
in the moving directions. In contrast, the model discrimi-
nates these two classes correctly, by integrating the motion-
enhanced descriptions. This phenomenon reveals that our
proposed motion-enhanced descriptions can contribute to
stronger discrimination between easy-confusing categories.

Fig. 2 investigates the learned patterns of the spatial
and temporal pathways, based on the reasoning tool1 [3].
An intriguing finding is that the image encoder mainly fo-
cuses on the static visual contents (e.g., “pieces”, “paper”),
while the motion encoder is capable of perceiving and track-
ing the moving objects corresponding to the motion-related
words (e.g., “tearing”, “falling”). This phenomenon reveals
the image stream and motion stream learn different patterns
and complement each other to generate the integrated visual
representations for each video clip.

A.3. Implementation Details

As shown in Tab. 2, we present the training hyperpa-
rameters for the experiments in the main manuscript on
SSv2 and K400. The data augmentations (e.g., ColorJitter,
GrayScale) are available in PyTorch [8] torchvision pack-
age. In most of the various experimental settings, the shared
configurations illustrate the remarkable adaptability of our
proposed MoTED.
Supervised experiments. We conduct the fully-supervised
experiments on K400 and SSv2. The complete training and
validation sets are utilized for training and inference, re-
spectively. Following prior works [14], we perform uniform
sampling to obtain each temporal clip. For K400 dataset,
we scale the shorter side of each frame in spatial resolution
to 256 and take a 224 × 224 center crop. Following [1, 9],
we adopt the multi-view inference with 1 spatial crop and 3
temporal clips.
Zero-shot experiments. Following the recipes in [7], we
train MoTED (ViT-B/16) with 32 frames on K400 and adopt
the single-view inference. We apply the following two

1https://github.com/hila-chefer/Transformer-MM-Explainability

https://github.com/hila-chefer/Transformer-MM-Explainability


Spat. Temp. α SSv2 K400 GFLOPs

8f
8f 1 68.6 84.5 176

16f 2 70.1 85.1 184
32f 4 70.4 84.9 193
64f 8 70.5 85.0 212

(a) Varying values of α, i.e., the number of input
frames in the temporal pathway.

Top-k SSv2 K400 GFLOPs
1 66.6 84.6 180
3 68.9 84.9 182
5 70.1 85.1 184
7 69.9 84.9 186

10 70.1 84.8 189
(b) Varying values of k, i.e., the number of similar
classes in generating descriptions.

Motion Encoder SSv2 K400 GFLOPs
R(2+1)D [13] 68.3 83.4 164
X-CLIP [7] 68.6 84.6 167

VideoMAE [12] 69.7 83.4 170
Ours 70.1 85.1 184

(c) Alternative choices of the motion encoder.

Table 1. Ablations on Something-Something V2 and Kinetics-400. The spatial encoder is a 8-frame vanilla ViT-B/16 pre-trained by
CLIP [10]. The inference protocol of all models and datasets are 3 clips × 1 center crop.

(b) Confusion matrix withMoTED(a) Confusion matrix withoutMoTED
Figure 1. The comparison between the confusion matrices of the model trained without/with the motion-enhanced descriptions on SSv2
dataset [4]. We select the categories with similar semantics, starting with “Pushing something” or “Pulling something”.
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Figure 2. Two cases to visualize the relevance [3] between text
and image/motion features to highlight the information relevant to
the prediction. The different “regions of interest” and “words of
importance” indicate that the motion and image features could be
disentangled.

evaluation protocols in our zero-shot experiments. (1) For
HMDB-51 and UCF-101, following [10], the prediction is
conducted on the three splits of the test data, and we re-
port the average top-1 accuracy and standard deviation. (2)
For Kinetics-600, following [7], the 220 new categories out-
side K400 are used for evaluation. The evaluation is con-
ducted three times. For each iteration, we randomly sam-
pled 160 categories for evaluation from the 220 categories
in Kinetics-600.
Motion description generation. To generate the re-
quired motion-enhanced descriptions, we first query
large language models (LLMs) with one question: ‘Q:
What is the motion concept in a video
of <category name>? A:’, but it could result in
the answers with duplicated sentences, such as: ‘The
motion concept of slapping involves
striking someone or something with
an open hand, usually in a quick and
forceful manner. This motion involves
a swift movement using the open hand or
fingers that usually involves striking
against something, primarily as a



Table 2. The training hyperparameters on SSv2 and K400. Note
that, “Lr.” is the abbreviation of “learning rate”.

settings SSv2 K400
Optimization
Optimizer [5] AdamW AdamW
Optimizer betas (0.9, 0.98) (0.9, 0.98)
Batch size 256 256
Lr. schedule [6] cosine decay cosine decay
Warmup schedule linear linear
Linear warmup 5 5
Base Lr. 1e-4 8e-5
Minimal Lr. 8e-7 8e-7
Weight decay 1e-3 1e-3
Epoches 40 40

Data augmentation
RandomFlip None 0.5
MultiScaleCrop [15] None (1, 0.875, 0.75, 0.66)
ColorJitter 0.8 0.8
GrayScale 0.2 0.2
Label smoothing [11] 0.1 0.1
Mixup [17] 0.8 0.8
Cutmix [16] 1.0 1.0

way of getting attention or causing
discomfort. It’s worth noting that
slapping can cause pain, discomfort,
or injury, depending on the force and
target area.’ The generated first two sentences share
similar semantics and the last sentence describes the impact
of the action. In this way, it could bring up additional costs
and unnecessary noises. Thus, we take a two-shot prompt
technique [2] to control the generated descriptions to be
concise and motion-related.
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