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A. Detailed Experimental Settings
Here we describe the detailed experimental settings to guar-
antee the reproducibility. All experiments are conducted on
NVIDIA A100-80GB GPUs.

A.1. Datasets
In this work, we adopt 10 datasets in total to validate the
effectiveness of the proposed TVP. We categorize them into
4 visual or multimodal tasks and we will introduce them
respectively.

Object Recognition. Following [2, 9], we take close-
ended evaluation for recognition, restricting the vocabulary
to the category names of the datasets. To be specific, The
prompt given to the models is “This is a photo of a” and
the target for text completion will be the ground-truth label
in text. We concatenate each candidate category after the
prompt and select the one with maximum log-likelihood as
the prediction. The description for TSE is in the template of
“This is a photo of a {ground-truth label}”.

We take 7 datasets for this task, including CIFAR-10,
CIFAR-100 [31], ImageNette [19] (a subset of ImageNet),
which are commonly used for image classification, and
SVHN [42], Oxford Pets [23], FGVCAircraft [41] (manu-
facturer level), Food101 [6], which are popular datasets for
fine-grained classification in specific domains. By default,
we take the train split for training, val split for valida-
tion and test split for testing as provided in the dataset.
If val split is not provided, we sample a certain proportion
for validation.

Object Counting. We take CLEVR [25] as an example.
Unlike recognition, we take an open-ended evaluation for
object counting. We ask the models “How many objects are

there in this image? Answer with a single number.” and
generate the response with do sample set False and other
parameters as default. We evaluate the response as correct
or not by checking whether the answer of number appears
in it. The corresponding description for TSE is “There are

{number} objects in this image”. We take the train split
for training and sample 10% and 20% out of val split for
validation and testing respectively.

Multimodal Reasoning. We take Hatefulmemes [29]
for multimodal reasoning, which ask the models to decide
whether the text on the meme and the visual content com-
bined together convey hatred. Following [9], the prompt is
“This is an image with “{}” written on it. Is it hateful?”,
and we take the ranking method used for recognition here
with “Yes” and “No” as labels. We use the normalized log-

likelihood to calculate ROC AUC score. The description for
TSE is “This is (not) hateful”. We take 90% of train split
for training, the rest 10% for validation and dev split for
testing.

Hallucination Correction. We take POPE [35], which
ask the models whether there is a certain object in the im-
age or not to evaluate their hallucination. The prompt given
to the model is consistent with the default setting in official
code, as “Is there a “{}” in the image?” and we also take
“Yes” and “No” as labels. The description for TSE is in the
template of “There are {object list} in the image.” based
on the annotations from MSCOCO [36]. We take the pub-
lic release split (3000 samples) for testing and generate an-
other dataset of 12000 samples for training and validation
with 90%-10% random split. In this work, we only adopt
datasets built with adversarial negative sampling strategy to
challenge the models at utmost.

A.2. Models
We select 6 modern MLLMs for experiments. These mod-
els have different implementations, for instance BLIVA [21]
uses two projection layers to better address visual-text
alignment and VPGTrans [63] introduces the concept of vi-
sual prompt generator to transfer pre-trained visual encoder
across different LLMs. We clone the official codebase of
different models and unify the interface for training and in-
ference to better incorporate different models.

The detailed configuration for them mainly involves
the the choices of LLMs. We take Vicuna-7B-v0 [8] for
MiniGPT-4 [69], BLIVA and VPGTrans, Vicuna-7B-v1.1
for InstructBLIP [9], Flan-T5-XL [55] for BLIP2 [34],
and ChatGLM-6B [61] for VisualGLM-6B [1]. For visual
encoders, these MLLMs share the structure of ViT-G/14,
but with different projection layers and training paradigms,
which guarantee the model diversity. These models can
be deployed conveniently following the official instructions
provided in the repositories.

As for the CLIP’s visual encoder for TSE, we use ViT-
B/32, a lightweight and popular version for studying CLIP.
Since TSE is to introduce extra task knowledge, it does not
need to have the same visual encoder as MLLMs.

A.3. Hyperparameters
We introduce the setting of hyperparameters in this
work. The design of visual prompts has been introduced
in Sec. 3.1. The batch size for training is 16. The learning
rate � in Eq. (7) is 10 by default. The maximal number of



training epochs is 10 with cosine scheduler following [56].
For the weights for the proposed FCA and TSE loss

terms, we set them optimal by searching within {0.0005,
0.001, 0.003, 0.005, 0.008} and {0.0001, 0.0005, 0.001}
respectively on validation set, while keeping other hyperpa-
rameters consistent with baselines.

B. Additional Results
B.1. Results on Other Datasets
Besides the 6 datasets displayed in the main paper, we
also validate the effectiveness of our method on 4 com-
monly used classification datasets and demonstrate the re-
sults in Tab. 6.

Apart from the coarse-grained classification dataset
CIFAR-100, the zero-shot performance of modern MLLMs
on these fine-grained datasets in specific domains is far from
satisfactory, further emphasizing the necessities for adapt-
ing MLLMs to downstream tasks.

The observations and conclusions in Sec. 4.2 remain
consistent. We can see that visual prompts generated by
TVP on a single model (MiniGPT-4 or InstructBLIP) bring
the most significant improvements to 6 models. Moreover,
by ensembling two models for training visual prompts, the
performance is further boosted to higher levels.

B.2. Results on Corrupted Datasets
Robustness has been a crucial issue for deep neural net-
work, concerning the stability of model in applications. It
is natural to evaluate the robustness of visual prompts to
image common corruptions [17]. We examine the perfor-
mance of visual prompts generated by MiniGPT-4 on cor-
rupted datasets like CIFAR-10-C and ImageNette-C. We set
the severity level as 3 and test with 15 corruptions. We use
the official release of CIFAR-10-C and the official code1 to
generate corresponding corrupted dataset for ImageNette.

The results are shown in Tab. 9. Visual prompts gener-
ated by VP and EVP cannot effectively improve the 6 mod-
els on average under the corruptions imposed to CIFAR-
10, while TVP can still bring 2.30% and 3.09% on CIFAR-
10-C and ImageNette-C respectively. The results indicate
that the consolidation of task-agnostic representations and
enhancement of task-related semantics by TVP effectively
strengthen the robustness of learned visual prompts to com-
mon image corruptions.

B.3. Detailed Results for Ablations and Analyses
Due to space limit, we only report the average perfor-
mance or average delta in performance for ablation stud-
ies in Sec. 4.4 and in-depth analyses in Sec. 4.5. Here, we
display the results for each setting and each model in detail.

1https://github.com/hendrycks/robustness

Detailed results for Tab. 2 are in Tab. 10, those for Tab. 3 are
in Tab. 7, those for Fig. 5 are in Tab. 11 and those for Tab. 4
are in Tab. 8.

C. Discussion on Computational Efficiency
As we target on efficient adaptation for diverse MLLMs
rather than fine-tuning each of them respectively, we here
discuss the computational efficiency of the proposed TVP.

C.1. Comparison with Fine-tuning Methods
We conduct additional experiments on an A100-80G GPU
with half precision and the same batch size as TVP. If the
training exceeds GPU memory (e.g., BLIVA), we adopt
gradient accumulation. Here we use CIFAR-10 and the
prompts trained on InstructBLIP to compare with full fine-
tuning and LoRA. Results are displayed in Tab. 5. Though
FFT and LoRA have moderately higher accuracy than TVP
due to much larger numbers of trainable parameters (�4B
for FFT, �8M for LoRA and ⇠70K for TVP), TVP has
the minimal computation overhead, which is reflected in the
smallest memory demand and the shortest average training
time. When the computation resources are limited to fine-
tuning, off-the-shelf visual prompts trained by TVP are ex-
pected to achieve black-box adaptation with no cost. This
supports the motivation of our method.

InstructBLIP BLIP2 MiniGPT-4 BLIVA

FFT LoRA TVP FFT LoRA TVP FFT LoRA TVP FFT LoRA TVP

Acc (%) 99.16 98.78 98.07 99.09 98.08 96.02 99.27 95.18 91.69 99.07 98.14 97.78
Mem. (GB) 63.5 33.8 31.1 36.9 21.8 9.2† 62.4 35.6 18.3† 66.5 55.2 18.5†
Time (min) 30 26 27 28 26 0 29 25 0 118 92 0

Table 5. Comparison of performance, memory costs and training
time with fine-tuning methods. gray for black-box models, † for
inference mode, since they need no training for TVP.

C.2. Comparison with Baseline Visual Prompting
Compared to the baselines, VP and EVP, TVP demands
additional forward passes through vision encoders. Tak-
ing MiniGPT-4 for example, VP and EVP need one for-
ward pass in each iteration and take around 820GFLOPs.
For TVP, the combination of FCA and TSE demands an
extra forward pass through the MLLM’s visual encoder
(⇠260GFLOPs, FCA) and another forward pass through
CLIP (⇠7GFLOPs, TSE). While extra computation for TSE
is negligible, FCA brings around 32% more computation
overloads, with a similar increase in training time. How-
ever, the original visual features only need to be computed
once, thus the cost for FCA can be distributed to each epoch
and will only bring around 3% extra computations when
trained for 10 epochs, which is acceptable. The computa-
tion overheads can be further alleviated in the future.



Recognition: CIFAR-100
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Clean 61.85 58.41 60.65 58.00 56.34 12.71 0.00

MiniGPT-4
VP [3] 63.54⇤ 44.40 60.05 59.93 53.36 12.15 -2.42

EVP [56] 71.05⇤ 48.91 56.43 59.23 56.44 20.10 +0.70
TVP (ours) 75.36⇤ 65.10 64.15 57.84 53.58 21.34 +4.90

InstructBLIP
VP [3] 60.65 76.16⇤ 58.60 58.32 58.40 9.47 +2.27

EVP [56] 62.24 78.68⇤ 61.66 57.37 59.86 12.13 +4.00
TVP (ours) 63.92 77.92⇤ 63.72 62.62 56.09 12.97 +4.88

Ensemble
VP [3] 65.48⇤ 71.77⇤ 63.48 60.25 55.04 9.15 +2.87

EVP [56] 70.13⇤ 74.89⇤ 62.40 62.07 60.76 14.96 +6.21
TVP (ours) 73.33⇤ 77.62⇤ 64.19 62.79 62.18 13.26 +7.57

Recognition: Pet37
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Clean 30.50 27.23 11.53 16.52 22.21 31.07 0.00

MiniGPT-4
VP [3] 42.38⇤ 33.69 11.80 23.14 25.81 29.46 +4.54

EVP [56] 56.67⇤ 30.44 13.22 22.40 27.91 28.37 +6.66
TVP (ours) 59.53⇤ 39.00 16.57 25.27 30.53 29.35 +10.20

InstructBLIP
VP [3] 40.23 37.80⇤ 13.27 17.83 29.71 29.54 +4.89

EVP [56] 40.83 65.25⇤ 12.16 17.63 31.70 30.36 +9.81
TVP (ours) 41.05 66.86⇤ 14.28 22.27 42.95 30.44 +13.13

Ensemble
VP [3] 46.77⇤ 43.80⇤ 15.10 22.13 32.73 30.69 +8.69

EVP [56] 56.99⇤ 66.31⇤ 13.55 15.10 32.76 29.60 +12.54
TVP (ours) 51.35⇤ 61.60⇤ 13.87 26.30 48.11 28.02 +15.03

Recognition: Aircraft
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Clean 8.55 10.26 6.54 14.34 8.19 4.05 0.00

MiniGPT-4
VP [3] 30.15⇤ 8.67 6.93 14.97 11.13 4.02 +3.99

EVP [56] 32.52⇤ 9.36 6.42 17.64 11.25 4.02 +4.88
TVP (ours) 33.99⇤ 9.81 7.41 20.76 7.20 4.02 +5.21

InstructBLIP
VP [3] 12.90 16.92⇤ 4.59 12.18 8.97 4.02 +1.27

EVP [56] 22.92 31.35⇤ 5.28 23.97 11.04 4.02 +7.78
TVP (ours) 30.48 36.03⇤ 4.02 20.76 11.85 4.04 +9.21

Ensemble
VP [3] 28.68⇤ 25.50⇤ 7.29 13.02 11.52 4.05 +6.35

EVP [56] 26.76⇤ 26.34⇤ 6.45 17.13 12.22 4.02 +6.83
TVP (ours) 30.27⇤ 24.84⇤ 4.02 23.10 24.00 4.59 +9.82

Recognition: Food101
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Clean 32.99 28.99 47.29 30.42 36.08 5.90 0.00

MiniGPT-4
VP [3] 50.14⇤ 32.08 34.10 23.49 31.92 4.67 -0.88

EVP [56] 63.72⇤ 30.93 45.43 27.64 33.74 3.88 +3.95
TVP (ours) 64.16⇤ 37.66 48.95 29.43 36.36 5.54 +6.74

InstructBLIP
VP [3] 19.68 41.23⇤ 33.70 26.85 36.28 8.71 -2.54

EVP [56] 37.47 64.95⇤ 48.87 31.25 43.37 3.84 +8.01
TVP (ours) 38.49 68.51⇤ 48.55 31.13 44.75 6.02 +9.46

Ensemble
VP [3] 53.03⇤ 59.21⇤ 47.29 27.68 46.57 6.42 +9.75

EVP [56] 63.48⇤ 66.50⇤ 48.20 27.49 26.46 4.12 +9.10
TVP (ours) 63.92⇤ 66.22⇤ 51.80 34.61 44.44 5.47 +14.13

Table 6. Results on 4 more datasets of object recognition. Vi-
sual prompts are trained on MiniGPT-4, InstructBLIP and their
ensemble with different methods, and further tested on 6 modern
MLLMs. Top-1 accuracy (%) is reported.
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MiniGPT-4

5 94.29 84.17 89.40 91.60 90.94 90.15 +2.84
10 96.00 84.03 93.17 91.82 92.73 85.17 +3.23
20 96.82 91.26 86.68 88.49 93.71 90.39 +3.97
40 95.70 89.44 88.49 87.68 89.69 88.78 +2.71
50 96.77 87.29 87.62 88.26 88.05 87.15 +1.93
80 94.21 78.21 86.41 84.02 85.91 76.62 -3.03

InstructBLIP

5 89.73 96.41 85.08 91.95 93.64 88.97 +3.71
10 88.03 97.06 92.47 91.89 94.90 91.72 +5.42
20 88.04 98.04 82.78 93.96 97.95 93.13 +5.06
40 85.16 98.24 86.37 89.21 89.88 93.55 +3.15
50 84.52 97.81 93.58 87.33 91.50 86.28 +2.91
80 82.38 94.75 83.15 81.85 88.31 80.39 -2.12

Ensemble

5 91.64 94.53 94.72 88.97 94.71 86.94 +4.66
10 95.08 95.65 92.73 87.58 94.00 78.77 +3.38
20 95.19 96.55 93.37 90.59 96.23 84.33 +5.45
40 97.73 97.41 84.59 91.52 97.17 90.34 +5.87
50 96.60 97.31 88.85 88.20 95.02 88.31 +5.12
80 92.01 95.99 84.14 81.64 94.14 91.62 +2.67

Table 7. Detaile results for the ablation study about the impact of
prompt width on the performance of TVP on CIFAR-10 in Tab. 3.
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M
in

iG
PT

-4

In
st

ru
ct

B
LI

P

B
LI

P2

V
PG

Tr
an

s

B
LI

VA

V
is

ua
lG

LM

Avg. �

CIFAR-10
VP [3] 87.97 94.20 82.59 88.64 89.13 90.47 +1.57
EVP [56] 81.89 89.44 82.19 90.11 84.15 95.14 -0.11
TVP (ours) 88.80 94.38 89.92 91.53 89.91 93.63 +4.10

ImageNette
VP [3] 84.25 74.70 92.00 81.50 84.59 72.79 +1.24
EVP [56] 83.18 77.38 87.39 83.31 79.82 72.18 +0.14
TVP (ours) 88.36 77.20 94.01 82.78 80.15 73.86 +2.33

SVHN
VP [3] 39.42 30.00 32.87 33.57 27.49 21.62 -0.29
EVP [56] 35.34 24.27 33.20 34.63 21.97 20.24 -2.84
TVP (ours) 41.98 30.02 26.88 39.49 31.55 26.23 +1.57

Pet37
VP [3] 34.15 33.01 14.64 20.82 25.40 28.26 +2.87
EVP [56] 33.39 31.34 9.46 16.54 29.35 26.25 +1.21
TVP (ours) 38.05 30.01 14.99 23.58 28.56 27.12 +3.87

Aircraft
VP [3] 16.50 7.74 5.88 13.08 10.56 4.02 +0.97
EVP [56] 19.05 9.24 4.05 11.01 9.09 4.02 +0.75
TVP (ours) 15.15 11.58 4.05 10.68 8.58 4.02 +0.35

Food101
VP [3] 31.45 27.33 40.48 29.19 41.70 5.31 -1.04
EVP [56] 33.03 33.27 37.90 26.85 40.24 4.08 -1.05
TVP (ours) 37.47 43.84 38.89 28.95 38.93 4.95 +1.89

Table 8. Detailed results for the analysis on the generalization of
TVP using ensemble across diverse recognition datasets in Tab. 4.



Corruption
Types Fog JPEG

Compression
Zoom
Blur

Glass
Blur

Shot
Noise

Defocus
Blur

Elastic
Transform Frost Brightness Snow Gaussian

noise
Motion

Blur Contrast Impulse
Noise Pixelate Avg.�

Clean 85.73 69.41 82.87 70.72 71.13 85.93 82.87 83.12 86.69 82.69 65.85 80.24 86.72 79.38 81.75 0.00
VP [3] 81.96 55.36 79.68 58.69 60.05 82.67 80.42 77.66 83.59 78.71 52.67 74.12 82.86 71.06 76.26 -6.62
EVP [56] 85.31 57.10 82.51 58.49 63.76 85.93 83.90 80.46 86.78 82.33 56.20 76.57 85.96 75.04 76.67 -3.87
TVP (ours) 89.46 68.65 87.46 67.95 71.92 89.95 87.85 85.58 90.82 86.76 66.12 83.01 90.02 80.71 83.34 +2.30

(a) Average performance under different common corruptions at level 3 on CIFAR-10 with visual prompts generated on MiniGPT-4.

Corruption
Types Fog JPEG

Compression
Zoom
Blur

Glass
Blur

Shot
Noise

Defocus
Blur

Elastic
Transform Frost Brightness Snow Gaussian

noise
Motion

Blur Contrast Impulse
Noise Pixelate Avg.�

Clean 79.15 80.50 69.91 71.26 76.77 75.92 72.24 74.36 79.71 76.23 76.96 76.52 79.44 76.98 81.15 0.00
VP [3] 78.76 80.62 69.40 71.77 78.09 76.36 72.82 73.78 80.72 75.57 78.31 76.74 78.92 78.42 80.54 +0.25
EVP [56] 79.33 81.58 67.01 70.95 78.52 76.74 73.44 73.38 82.07 75.68 78.76 76.78 78.46 78.65 82.18 +0.43
TVP (ours) 82.53 84.20 70.31 73.25 81.00 80.32 74.76 76.51 83.58 79.19 81.07 79.85 82.07 81.05 83.79 +3.09

(b) Average performance under different common corruptions at level 3 on ImageNette with visual prompts generated on MiniGPT-4.

Table 9. Average performance under common corruptions [17] of different methods on CIFAR-10 and ImageNette. Visual prompts
generated by the proposed TVP still lead to the most significant improvements, showing better robustness to common corruptions.
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! % 97.95 86.97 90.58 90.94 92.18 87.82 3.82
% ! 97.94 86.93 85.74 90.32 92.78 81.30 1.91

! ! 98.33 92.82 91.68 88.70 87.48 87.53 3.83

(a) CIFAR-10

FCA TSE

M
in

iG
PT

-4

In
st

ru
ct

B
LI

P

B
LI

P2

V
PG

Tr
an

s

B
LI

VA

V
is

ua
lG

LM

Avg.�

% % 96.79 68.15 91.36 79.08 75.82 76.05 0.81
! % 95.87 75.87 96.51 82.24 78.19 70.11 2.73
% ! 97.81 67.59 91.64 78.35 84.23 82.93 3.36

! ! 97.71 78.34 94.98 86.34 84.51 75.34 5.80

(b) ImageNette
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% % 74.24 41.59 48.87 57.61 36.11 33.12 17.48
! % 74.81 56.69 52.98 51.96 50.35 24.93 20.84
% ! 81.39 53.41 50.99 59.46 56.60 32.91 24.68

! ! 75.17 54.32 61.95 51.10 60.28 32.17 24.72

(c) SVHN
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% % 52.17 39.03 20.17 8.00 34.23 13.60 8.64
! % 50.57 36.03 22.30 20.93 32.53 18.03 10.83
% ! 54.07 31.33 16.60 20.33 32.87 21.07 10.15

! ! 51.00 42.90 22.07 19.50 36.00 13.00 11.51

(d) CLEVR
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% % 57.58 60.66 55.34 56.87 60.64 57.27 0.09
! % 56.99 63.24 54.15 58.82 63.00 57.52 0.99
% ! 58.31 61.65 55.20 56.43 61.66 56.40 0.31

! ! 56.93 62.38 56.20 60.19 64.09 58.15 1.69

(e) Hatefulmemes
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% % 68.06 69.80 50.00 61.07 71.33 69.40 0.90
! % 69.60 74.00 50.13 59.47 74.80 70.27 2.33
% ! 69.00 75.13 49.93 61.27 72.40 69.47 2.15

! ! 68.73 75.13 51.40 64.47 72.67 71.00 3.19

(f) POPE

Table 10. Detailed results for the ablation study on different combinations of FCA and TSE in Tab. 2.
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CIFAR-10

VP [3]

1% 83.08 74.95 79.80 80.35 81.67 75.28 79.19
5% 82.06 76.07 79.20 80.97 80.07 77.98 79.39
10% 84.29 77.58 80.00 80.99 81.96 73.38 79.70
25% 90.97 80.35 82.42 81.34 84.63 77.28 82.83
50% 90.53 81.14 77.45 83.29 84.31 79.84 82.76

EVP [56]

1% 97.11 86.67 83.74 87.06 89.23 82.60 87.74
5% 97.85 85.56 83.06 86.64 87.92 86.49 87.92
10% 97.93 83.15 83.00 88.81 84.78 86.49 87.36
25% 98.24 85.16 82.29 87.53 85.71 85.72 87.44
50% 98.00 84.07 83.86 87.39 86.66 86.01 87.67

TVP (ours)

1% 97.80 86.04 85.27 87.90 88.65 89.69 89.23
5% 97.24 87.79 88.32 87.28 90.09 89.14 89.98
10% 97.85 87.69 90.82 87.36 91.97 87.87 90.59
25% 98.23 84.86 89.20 87.61 89.96 86.34 89.37
50% 97.68 87.59 93.57 86.33 88.12 85.25 89.76

SVHN

VP [3]

1% 67.63 47.78 43.42 36.19 38.35 26.21 43.26
5% 66.96 38.52 47.80 44.07 33.59 34.96 44.32
10% 81.06 35.09 21.37 40.87 32.99 20.47 38.64
25% 58.26 41.86 50.85 58.74 35.33 29.64 45.78
50% 73.98 50.65 46.92 45.37 43.52 20.82 46.88

EVP [56]

1% 75.05 31.80 52.44 42.97 44.37 27.53 45.69
5% 77.55 44.95 48.97 57.99 39.28 36.55 50.88
10% 80.57 42.22 61.53 53.69 53.69 22.24 52.32
25% 76.78 44.75 51.18 59.47 46.58 33.14 51.98
50% 75.98 41.35 47.41 55.47 34.93 30.37 47.59

TVP (ours)

1% 79.68 38.39 56.55 46.34 48.16 33.36 50.41
5% 85.53 48.70 64.67 58.15 48.28 39.79 57.52
10% 80.52 47.70 61.37 56.63 45.20 35.24 54.44
25% 80.70 51.20 62.89 59.59 59.93 35.20 58.25
50% 82.58 51.23 65.77 59.79 53.57 35.91 58.14

Hatefulmemes

VP [3]

1% 57.04 56.22 60.26 51.79 49.67 56.58 55.26
5% 57.08 56.44 54.53 53.84 54.68 54.31 55.15
10% 57.50 55.73 57.94 55.40 53.38 48.88 54.81
25% 60.16 58.05 57.49 55.54 53.21 48.01 55.41
50% 57.27 55.97 53.82 54.38 54.70 55.34 55.25

EVP [56]

1% 48.33 60.13 55.84 61.23 59.54 56.94 57.00
5% 54.29 62.50 52.35 55.90 61.70 57.02 57.29
10% 55.02 62.45 50.84 57.80 63.04 57.31 57.74
25% 58.26 59.88 54.90 54.60 62.16 58.92 58.12
50% 57.42 61.64 57.07 52.98 61.64 57.64 58.07

TVP (ours)

1% 51.60 61.32 55.06 59.24 61.36 57.80 57.73
5% 53.65 62.68 53.30 58.00 62.48 58.22 58.06
10% 54.75 61.40 54.52 59.10 62.53 58.02 58.39
25% 59.83 61.81 53.86 57.17 62.88 57.45 58.83
50% 55.34 62.45 53.51 59.42 64.65 58.06 58.91

Model
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ImageNette

VP [3]

1% 77.58 64.08 93.50 77.73 73.53 72.25 76.45
5% 81.91 64.28 91.80 81.40 80.48 73.45 78.89
10% 78.22 65.17 95.13 77.12 67.52 72.43 75.93
25% 82.42 60.25 93.12 79.29 71.41 76.10 77.10
50% 82.01 62.14 92.64 76.66 77.83 76.94 78.04

EVP [56]

1% 93.01 62.00 94.96 74.07 83.38 80.57 81.33
5% 97.61 62.80 89.10 77.10 79.88 80.25 81.12
10% 98.00 71.87 90.37 72.97 76.05 75.85 80.85
25% 97.44 76.08 89.15 63.99 84.58 74.24 80.91
50% 97.40 62.06 85.12 74.70 82.52 86.57 81.39

TVP (ours)

1% 96.13 72.08 89.30 79.06 90.78 70.45 82.97
5% 97.61 62.70 91.80 76.87 83.46 91.95 84.07
10% 97.20 72.25 94.70 83.21 82.93 74.68 84.16
25% 97.63 72.48 89.86 85.96 80.46 73.71 83.35
50% 98.09 73.99 90.29 84.66 86.09 75.03 84.69

CLEVR

VP [3]

1% 33.17 31.57 12.73 12.73 32.87 12.87 22.66
5% 38.37 27.57 12.83 21.63 19.23 12.57 22.03
10% 40.13 36.00 23.33 10.97 28.67 12.63 25.29
25% 39.81 26.44 12.95 12.50 21.84 13.77 21.22
50% 39.30 28.80 12.77 12.00 28.63 12.83 22.39

EVP [56]

1% 47.03 35.53 15.47 11.37 31.80 13.03 25.71
5% 25.07 35.97 27.93 9.77 34.60 14.30 24.61
10% 49.80 34.57 16.43 15.60 32.40 13.10 26.98
25% 44.70 32.43 20.67 16.40 35.57 12.90 27.11
50% 53.70 42.60 20.10 7.47 33.87 12.90 28.44

TVP (ours)

1% 45.60 37.70 15.13 25.50 34.70 12.77 28.57
5% 43.10 17.50 26.60 15.03 41.80 23.17 27.87
10% 48.77 45.93 14.53 20.60 37.67 13.40 30.15
25% 47.13 42.77 19.80 21.13 34.53 12.87 29.71
50% 47.37 42.37 24.43 15.70 35.27 13.30 29.74

POPE

VP [3]

1% 54.67 68.13 49.87 58.07 72.53 69.67 62.16
5% 51.53 66.87 50.00 62.87 73.73 71.53 62.76
10% 52.73 70.67 50.00 59.07 73.00 69.13 62.43
25% 53.93 70.73 49.87 59.27 73.27 71.60 63.11
50% 51.00 71.27 50.00 63.07 73.93 69.33 63.10

EVP [56]

1% 51.60 74.00 50.00 58.67 72.53 68.13 62.49
5% 60.73 67.60 50.04 61.24 74.77 69.47 63.97
10% 64.73 65.33 50.00 59.67 71.67 70.47 63.65
25% 58.73 73.93 50.00 60.67 74.20 69.47 64.50
50% 61.36 72.13 49.95 61.27 72.69 69.98 64.56

TVP (ours)

1% 61.00 71.47 50.13 59.00 75.00 69.80 64.40
5% 62.73 69.47 50.00 65.20 72.47 70.53 65.07
10% 59.87 75.47 49.87 65.13 74.27 70.67 65.88
25% 71.13 69.93 49.60 60.60 72.67 70.40 65.72
50% 70.47 68.67 49.87 61.00 75.47 70.33 65.97

Table 11. Detailed results for the analysis on the impact from different training data scales in Fig. 5.
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