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Supplementary Material

I. More Details about Metrics, Sampling Meth-
ods and Proof

I.1. More Details about Metrics

I.1.1 FL Communication Cost tcost
A client’s communication cost tcost for one round can be approx-
imated by accounting for three factors: the ideal computation and
communication costs dependent on device capacity, an extended
cost due to state unavailability, and additional costs such as server
configuration and I/O delay. This can be represented by the fol-
lowing equation:

tcost =
|θ|
Bup

+
|θ|

Bdown
+ |D|Scomp + tunavail + tbreak. (3)

The first three components, |θ|
Bup

+ |θ|
Bdown

+ |D|Scomp, repre-
sent the ideal computation and communication costs, assuming
clients are always available. Here, |θ| represents the communi-
cated model size, Bup and Bdown indicate network uploading
and downloading speeds, |D| refers to the size of a client’s lo-
cal training data, and |Scomp| denotes the training speed. The
term tunavail represents the client’s unavailable duration during
the completion of the uploading, downloading, and training pro-
cess. Specifically, Let Stati represent the state trace of client i,
where Stati[t1 : t2] indicates the available time duration of client
i from time t1 to t2. So, the ticost of client i at time t needs to
satisfy Stati

[
t : t+ ticost

]
= ticost − tunavail. Additional costs,

such as server configuration and I/O delay, are captured by tbreak.

In our MC simulated FL, we calculate tcost by assuming that |θ| is
the same model size as ViT-B and |D| to be 1. The values of Bup,
Bdown, and Scomp can be inferred from our database of device
capabilities. We set tbreak to a constant of 20 seconds.

I.1.2 Metrics for Deadline-based Strategies

Calculation of Si for DevMC-R: To measure sole device het-
erogeneity, we assume clients’ states are always available, which
means tunavail = 0 in Eq. (3), and propose to use MC motived Al-
gorithm S3 to measure Si. In each MC simulated FL communica-
tion round, we randomly sample k clients and calculate the corre-
sponding ticost of client i based on their associated device capabil-
ity Devi and Eq. (3). We then check whether ticost is less than the
specified ddl and record their successful times by Si.

Calculation of Si for StatMC-R and InterMC-R: We use Al-
gorithm S4 (with only black texts) and Algorithm S4 (with both
black and red texts) to derive Si for StatMC-R and InterMC-R, re-
spectively. The only difference between StatMC-R and InterMC-R
is the calculation of ticost. Specifically, to assess state heterogene-
ity, we assume ticost follow a prior uniform distribution p

(
ticost

)
of (0, ddl). However, we use the real device databases Dev to
estimate the ticost for InterMC-R.

For accurately calculating Si for DevMC-R, StatMC-R, and
InterMC-R, we establish a total number of simulated FL commu-

nication rounds, denoted as rounds. It is advisable to set the value
of rounds large enough to encompass the entire time duration of
Stat. In our empirical analysis, we set rounds to 3000 to ensure
reliable results.

From Si to metrics for deadline-based Strategies. We introduce
two decay functions (F (x) = log(x+1) and Clip (Si, 0,Sideal))
that account for the diminishing contribution of increases in total
number of successful participation times, see in Eq. (1). Clip is
defined as:

Clip (Si, 0,Sideal) =


0, Si ≤ 0

Si, 0 < Si < Sideal
Sideal, Si ≥ Sideal.

Here Sideal is determined by assuming all clients are always avail-
able, and all device capacities are the same: Sideal = k

N
∗rounds,

where rounds and k are the same as in calculation of Si. The Clip
function serves as an upper bound for more active clients resulting
from device and state heterogeneity, as it limits the influence of ex-
cessive successful participation times on the overall metric. This is
essential because excessive participation from highly active clients
can potentially skew the evaluation and mask the impact of other
clients in the system. Similarly, F (x) = log(x + 1) is based on
the intuition that as the number of participation times increases, a
client’s contribution to the global model should decrease, promot-
ing fairness and diversity among clients.

I.1.3 Metrics for Readiness-based Strategies.

In practical FL training using readiness-based strategy, researchers
usually allow FL training to continue until a target accuracy of
server model is reached and record the total communication cost
(or total training time) for evaluation. This approach is different
from the deadline-based strategy, which relies on fixed communi-
cation rounds rounds. However, the readiness-based strategy can
lead to unpredictable final communication rounds, as device and
state heterogeneity can intervene, causing variations in the num-
ber of active clients participating in different rounds. For exam-
ple, there might be fewer participating clients in each round due to
device and state heterogeneity, which means the server model will
require more communication rounds to achieve the target accuracy.
Therefore, using rounds as the endpoint for our metrics’ Monte
Carlo calculation is not appropriate. Instead, we opt for the con-
cept of trips, referring to the number of client updates received
at the server upon training completion, which is widely used in
Asynchronous FL [21, 36].

Total communication cost T estimation for DevMC-T: In the
readiness-based FL aggregation strategy, the server waits for a
specified proportion, denoted as pr, of clients to complete their
tasks, without imposing a deadline (ddl). Algorithm S1 displays
the process of evaluating the total communication cost for DevMC-
T, with state heterogeneity disabled by setting all clients’ states to
be always available and tunavail = 0. For each MC simulated FL



communication round, we randomly sample k clients and obtain
their corresponding ticost based on Devi and Eq. (3). The com-
munication cost of the current FL round, denoted as tprcost, is then
updated as tprcost ← Qpr(t

i
cost|i ∈ round ids), where Qpr rep-

resents the pr-th quantile. This Qpr aids in simulating the real
readiness-based FL aggregation strategy, where the server waits
for a proportion pr of clients to complete their tasks.

Total communication cost T estimation for StatMC-T and
InterMC-T: The black text in Algorithm S2 depicts how we as-
sess T with only state heterogeneity. Similar to Algorithm S4,
we check the available states of clients based on Stat when se-
lecting clients and randomly sample clients from ready ids. We
also assume ticost follow a prior uniform distribution p

(
ticost

)
of

(0, ddl) and update it with tunavail based on Stati. Finally, using
the quantile function Qpr(t

i
cost|i ∈ round ids) to get the com-

munication cost for updating T . Noting that due to inavailability
of clients accouting for state heterogeneity, cur trips only adds
the number of selected clients ready ids. The black text and red
text in Algorithm S2 formulate the estimation for InterMC-T. The
primary distinction between InterMC-T and StatMC-T, denoted by
the red text, lies in the fact that the ticost for InterMC-T is derived
from Devi, taking device heterogeneity into consideration.

For readiness-based strategy, we repeat above steps and update
cur trips accordingly until cur trips reaching aimed trips.

From T to Metrics for Readiness-based strategy. We use a con-
stant denominator trips

k
× tbreak to scale down the metric’s mag-

nitude, as T is usually in the millions of seconds, making it easier
to interpret and compare. Specifically, the metrics for readiness-
based strategy are updated to:

DevMC-T, StatMC-T, InterMC-T =
T

trips
k
× tbreak

where tbreak is empirically set to 20 seconds as in Eq. (3), k is the
number of sampled clients per round, and trips is set to 10000.

Algorithm S1 Communication cost estimation for device
metric DevMC-T under client readiness-based FL aggre-
gation strategy with a specified pr proportion of clients to
complete their task during each FL round.

Require: Total FL training trips trips, Total N local clients
with their associated device capacities Dev with up-
load/computation/download speeds, k the number of
clients selected in each round, tbreak the cost for server
allocation and aggregation, Qpr represents the pr quan-
tile function.

1: Initialize T ← 0, cur trips← 0
2: while cur trips < trips do
3: round ids← Sample k clients
4: cur trips← cur trips+ k
5: for client i in round ids do
6: Extract ids device capacity Devi from Dev
7: Use Devi to get its cost ticost based on Eq. (3)
8: tprcost ← Qpr(t

i
cost|i ∈ round ids)

9: T ← T + tprcost + tbreak
return T

Algorithm S2 Communication cost estimation for state
metric StatMC-T (or interplay metric InterMC-T) under
client readiness-based FL aggregation strategy with a spec-
ified pr proportion of clients to complete their task during
each FL round.
Require: Total FL training client trips trips. Total N lo-

cal clients with their associated states Stat and device
capacities Dev with upload/computation/download
speeds. Stati[t1 : t2] the available time duration from
time t1 to t2 of client i. k the number of clients selected
in each round, tbreak the cost for server allocation and
aggregation. Qpr represents the pr quantile function.
ticost the cost for client i to complete one round of down-
load/computation/upload tasks, which is from uniform
distribution and fixed in one simulation.

1: Initialize T ← 0, cur trips← 0
2: while cur trips < trips do
3: Find available clients ready ids at time t from Stat
4: if ready ids is empty then
5: Wait for another round to sample
6: else if Number of clients in ready ids < k then
7: Sampled clients round ids← ready ids
8: else
9: round ids← Sample k clients from ready ids

cur trips ← cur trips+Number of clients in
ready ids

10: for client ids in round ids do
(Interplay)

11: Extract ids device capacity Devi from Dev
12: Use Devi to get its cost ticost
13: Update the tunavail part of Eq. (3) based on

Stati
14: tprcost ← Qpr(t

i
cost|i ∈ round ids)

15: T ← T + tprcost + tbreak
return T

(a) DPGMM for continous device (b) DPCSM for discrete state

Figure S1. Overview of our DPGMM and DPCSM sampling meth-
ods. Low-end/High-end refer to different device capabilities, πi

denotes the probability of selecting a particular distribution, and
rank represents the rank of the state score.

I.2. More Details about Sampling Methods and
Proof

In Sec. 3.2, we propose DPGMM for sampling continuous device
databases and DPCSM for sampling discrete state databases.

For device databases, since the prevalence of the Gaussian distri-
bution in natural phenomena is widely acknowledged, we establish
it as the primary distribution for modeling the speed of individ-
ual devices. However, due to inherent variations among devices,
the speeds of different devices can be grouped into different cate-



Algorithm S3 Successful participation times S count of de-
vice metric DevMC-R for deadline-based FL aggregation
strategy with report deadline ddl.

Require: Total FL training rounds rounds. Total N local
clients with their associated device capacities Dev with
upload/computation/download speeds. k the number of
clients selected in each round, tbreak the cost for server
allocation and aggregation.

1: Initialize the success count S ← 0 and T ← 0
2: for round = 1 to rounds do
3: round ids← Sample k clients
4: for client ids in round ids do
5: Extract ids device capacity Devi from Dev
6: Use Devi to get its cost ticost based on Eq. (3)
7: if ddl > ticost then
8: Sids ← Sids + 1
9: comm costi ← ticost

10: else
11: comm costi ← ddl

12: T ← T +maxi∈round idscomm costi + tbreak
return S of each client

gories, each following its own Gaussian distribution. This leads to
a situation where the speed samples within a device database can
be considered as originating from a mixture Gaussian distribution.
The Dirichlet process is generalized from the Dirichlet distribution
and is used to describe the distribution of categories, therefore al-
lowing for flexible modeling and sampling of categories of device
speeds. Given a real-world device D, DPGMM receives two pa-
rameters, Kn and σ, to control device heterogeneity. Larger Kn

and σ shows higher heterogeneity than lower Kn and σ. Fig. S4
shows an example of the generation of samples for 10 clients with
different degrees of device heterogeneity. Kn controls the num-
ber of distinct samples; thus, more distinct devices are allocated to
these 10 clients when Kn = 4 compared to Kn = 2. σ controls
the variation of the selected Kn devices, and when σ increases,
the variation of the selected devices increases. Therefore, when
we increase Kn and σ, the degree of the device heterogeneity of
the samples increases.

For state databases, as a client’s state is a collection of discrete data
and cannot be characterized by Gaussian distributions like device
and is also unsuitable for Dirichlet process. We employ the idea of
StatMC-R and use the single state metric (adapted from StatMC-
R, see Appendix Sec. V) to transform the discrete state into one
single data point, making them compatible with the Dirichlet pro-
cess. Given a real-world baseline database with N states, DPCSM
receives two parameters startRank and α to control heterogene-
ity. Larger startRank and α shows higher heterogeneity than
lower startRank and α. Specifically, startRank controls the
rank of the optimal state selected from the baseline dataset, thus
a lower startRank indicates a higher quality optimal state of the
selected Kn states. α controls the probability of selecting subse-
quent states with lower single state metric, and when α increases,
the variation of the selected states increases. Therefore, when we
increase startRank and α, the degree of the state heterogeneity
of the samples increases. Besides, to ensure the sum of probability
of selecting each state πk, k ∈ 1, ..., N equals 1, we increase the
probability of last state by 1−

∑N
k=startRank πk.

Algorithm S4 Successful participation times S count of
state metric StatMC-R (or interplay metric InterMC-R) for
deadline-based FL aggregation strategy with report deadline
ddl.
Require: Total FL training rounds rounds. Total N lo-

cal clients with their associated states Stat and device
capacities Dev with upload/computation/download
speeds. Stati[t1 : t2] the available time duration from
time t1 to t2 of client i. k the number of clients selected
in each round, tbreak the cost for server allocation and
aggregation. ticost the cost for client i to complete one
round of download/computation/upload tasks, which is
from uniform distribution (0, ddl) and fixed in one sim-
ulation.

1: Initialize the success count S ← 0 and T ← 0
2: for round = 1 to rounds do
3: Find available clients ready ids at time T from

Stat
4: if ready ids is empty then
5: Wait for another round to sample
6: else if Number of clients in ready ids < k then
7: Sampled clients round ids← ready ids
8: else
9: round ids← Sample k clients from ready ids

10: for client ids in round ids do
(Interplay)

11: Extract ids device capacity Devi from Dev
12: Use Devi to get its cost ticost
13: Update the tunavail part of Eq. (3) based on

Stati
14: if ddl > ticost then
15: Sids ← Sids + 1
16: comm costi ← ticost
17: else
18: comm costi ← ddl

19: T ← T +maxi∈round idscomm costi + tbreak
return S of each client

Proofs

Proof of Theorem 3.1

Proof. First, we note that Gaussian Mixture Models (GMM) can
approximate any continuous distribution, given a sufficient number
of kernels ([47], [42]). Therefore, GMM can model the distribution
of speeds in the device database.

For any speed sample point X in the database, the variance is given
by:

E
[
(X − µ0)

2 | π1, . . . , πKn , µ1, . . . , µKn

]
(4)

= E
[
X2 | π1, . . . , πKn , µ1, . . . , µKn

]
− µ2

0 (5)

=

Kn∑
k=1

πk

(
E
[
X2

k | π1, . . . , πKn , µ1, . . . , µKn

])
− µ2

0 (6)

=

Kn∑
k=1

πk

(
σ2
k + µ2

k

)
− µ2

0 (7)



Where

π1, · · · , πKn ∼ Dir

(
α

Kn
, · · · , α

Kn

)
so

E(πk) =
α

Kn
(8)

and
µk ∼ N

(
µ0, (σ · σ0)

2)
so

E(µ2
k) = µ2

0 + (σ · σ0)
2 (9)

Then, we have:

E(X − µ0)
2 = E

[
E
[
(X − µ)2 | π1, . . . , πKn , µ1, . . . , µKn

]]
(10)

= E

[
Kn∑
i=1

πi(σ
2
k + µ2

k)− µ2
0

]
(11)

=

Kn∑
k=1

E
[
πk(σ

2
k + µ2

k)− µ2
0

]
(12)

=

Kn∑
k=1

[
E(πi)(σ

2
k + E(µ2

k))− µ2
0

]
(13)

=

Kn∑
k=1

[
α

Kn
(σ2

k + µ2
0 + (σ · σ0)

2)− µ2
0

]
(14)

=
α

Kn

Kn∑
k=1

σ2
k + (α−Kn)µ

2
0 +Kn (σ · σ0)

2

(15)

Considering this expression as a function of Kn and σ, the range
of the variance is given by:

(minKn

(
α

Kn

∑Kn
k=1 σ

2
k + (α−Kn)µ

2
0

)
, +∞).

Thus, for different specified sets of Kn and σ, the variance of the
sampled database can cover this range, which completes the proof.

Proof of Theorem 3.2

Proof. Let Xi denotes the single state metric Metric (see Ap-
pendix Sec. V) of D(i), with X1 > · · · > XN . For any state
trace sample point X in the database, the mean and variance of its
single state metric X are given by:

E(X | α) =
N∑

i=startRank

πiXi (16)

V ar(X | α) =
N∑

i=startRank

πi(Xi −
N∑

i=startRank

πiXi)
2 (17)

where

πi = bi · (1−
i−1∑

j=startRank

πj)

Here, bi is a sample from the Beta distribution beta(1, α), imply-
ing that E(bi) =

1
1+α

. A smaller α leads to a concentration of the
πi with samller i values.

Figure S2. Overview of our APP.

When the range of α is (0, +∞), and the range of startRank
is (1,N ), the mean of the single state metric of the state database
ranges from XN to X1. Meanwhile, the variance of the single state
metric of the state database ranges from 0 to (X1 −XN )2.

II. Training Latency Data Collection APP for
Mobile Devices

While current AI-Benchmark [22] provides latency information
for most popular CNN architectures on Android devices, it lacks
data for iOS devices and the recent Vision Transformers architec-
tures. We propose two apps for iOS and Android devices based on
TensorFlow Lite [45], fill this gap by capturing the latency compu-
tational information for iOS devices and recent Vision Transformer
architectures, see Fig. S2 for an overview of our proposed APPs.

Our data collection procedure first run several inference rounds as
warm-up before formal benchmarks, aiming to avoid the effects
of loading native libraries and the boot latency of devices. After
the warm-up, for each model, we randomly generate an input im-
age with the shape of 224 × 224, run the inference process for
100 iterations, and record the total training latency. The apps then
displays all latency results for collection.

Please note that although FLASH [60] and FedScale [29] have also
provided similar real-world device databases, FLASH’s database is
relatively small containing only 19 devices. Additionally, the net-
work uploading/downloading speeds in FedScale were measured
as a single-point data format, which is insufficient for capturing the
potential network fluctuations during FL communication rounds.

III. Experimental Details
All the methods are implemented with Pytorch and optimized with
SGD. All experiments are conducted on either a TITAN XP GPU
or GeForce RTX 3090. Models used in this paper are all pretrained
on ImageNets-1k [14]. We use 3 different random seeds for each
experiment to mitigate occasionality.

In FL training, we set local training epoch to 1. Each round,



we randomly sample 20 (k = 20) clients per round. The total
communication rounds are set to 3,000 for OpenImage and 4,500
for COVID-FL in deadline-based strategy, unless otherwise stated.
We set the target accuracy of COVID-FL/OpenImage to 80%/25%
in validation of device metrics (Sec. 5.2.1) and 75%/20% in val-
idation of both state metrics and interplay metrics (Secs. 5.2.2
and 5.2.3) for readiness-based strategy.

We require a minimum selection of 2 clients per round. If this
is not met, the round is marked as a failure, and the next round
begins. We also ensure a minimum success ratio of 0.1, meaning
that each FL training round is considered successful and the model
is updated only if at least 0.1×k clients successfully complete the
round.

In experiments to validate state metrics with real FL, we assume
all clients use the same device with its |θ| /Bup + |θ| /Bdown as
∼ N ( ddl

1.05
, ddl
1.05
× 0.1). This helps mitigate the impact of device

heterogeneity. We use ddl = 120 for deadline-based strategy, and
uniformly use seconds as the unit for all time-related data. We set
specified proportion rate = 1.0 for readiness-based strategy in our
experiments, unless otherwise stated.

Hyperparameters for compared FL methods. In FedProx [31],
µ is set to 0.1 and 0.01 for OpenImage and COVID-FL datasets,
respectively. In FedDyn [5], the α is set to 0.01. In FedKD [55],
the energy thresholds Tstart and Tend are 0.95 and 0.98. In Fed-
Buff [36], we set the server momentum β to 0.9 and K to 10. In
FetchSGD [40], k for sketch is set to 100000 and β for global mo-
mentum is set to 0.9.

Generation of heterogeneous device databases for validation
of our device metrics in Sec. 5.2.1. Our DPGMM and DPCSM
allows genearting arbitrary heterogeneity by manipulating pa-
rameters. For generating a wide range of heterogeneous de-
vice database, we apply our DPGMM approach and set Kn to
{50, 100, 200} and σ to {0.1, 0.4, 0.7, 1.1, 1.4, 1.7, 2.0}, with
an average device speed of 6 MB/s, to sample 21 sets of de-
vice databases from our base device dataset. Each set contains
100 devices. We illustrate the sampling results of device speeds
in Fig. S3.

Generation of heterogeneous state databases for validation
of our state metrics in Sec. 5.2.2. For heterogeneous state
database, we implement DPCSM with α in {1, 2, 3, 4, 5, 10, 100}
and StartRank in {0, 100, 350}. Each combination of α and
StartRank generates state databases consisting of 100 states.
Wide range of α and StartRank promise the different levels of
ST-Client-Ratio and diversity of sampled state databases.

Generation of heterogeneous device and state databases
for validation of our interplay metrics in Sec. 5.2.3.
We independently extract four sets of device and state
databases from above sampled results, ranging from mild
to severe heterogeneity. Their corresponding metrics are
DevMC-R ∈ {0.806, 0.896, 0.918, 0.928} and StatMC-R ∈
{0.752, 0.778, 0.858, 0.956}. Each set consists of 100 devices
and 100 states. By creating all potential pairwise combinations,
we generate 16 distinct interplay device and state sets, represent-
ing diverse real-world FL scenarios with varying device and state
heterogeneity.

In Sec. 5.3 we use the same 16 distinct interplay device and state
sets for evaluating current FL algorithms.
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Figure S3. Distribution of device speeds used in device hetero-
geneity experiments. For simplicity, we only show the network
downloading speeds here.

IV. Ablation Study of BiasPrompt+
To demonstrate the effectiveness of gradient surgery-based
staleness-aware aggregation strategy and communication-efficient
module BiasPrompt via fast weights in BiasPrompt+, we con-
duct an ablation study. BiasPrompt represents the method
that that solely incorporates our BiasPrompt module. The
staleness-aware strategy is represented by FedAVG+staleness-
aware, which indicates adding the staleness-aware strategy to Fe-
dAVG. BiasPrompt+ signifies the adoption of both the gradi-



(a) Kn = 2, σ = 0.1 (b) Kn = 2, σ = 0.2 (c) Kn = 2, σ = 0.3

(d) Kn = 4, σ = 0.1 (e) Kn = 4, σ = 0.2 (f) Kn = 4, σ = 0.3

Figure S4. Results of DPGMM Sampling under different parameter settings.

Figure S5. Ablation study for BiasPrompt+ on OpenImage and
COVID-FL. FedAVG+staleness-aware indicates the FedAVG with
the adoption of the gradient surgery-based staleness-aware aggre-
gation strategy. BiasPrompt+ implements both gradient surgery-
based staleness-aware aggregation strategy and communication ef-
ficient module BiasPrompt.

ent surgery-based staleness-aware aggregation strategy and the
communication-efficient module BiasPrompt via fast weights. As
the staleness-aware aggregation strategy is specifically designed
for deadline-based approaches, we only report the test accuracy

results for COVID-FL and OpenImage datasets within deadline-
based strategies. All other experimental settings remain consistent
with those described in Sec. 5.3.

Fig. S5 illustrates the test accuracy of various combinations
of our proposed modules. From the figure, we can observe
that BiasPrompt module greatly improves the performance com-
pared to FedAVG. This is because BiasPrompt tackles the long
wall-clock issue by its communication efficiency. In addition,
FedAVG+staleness-aware outperforms FedAVG in most hetero-
geneity cases. The staleness-aware strategy in FedAVG+staleness-
aware allows stale clients to participate in the aggregation, thereby
greatly improving the utilization of their updates. The gradient
surgery-based approach ensures that stale updates do not nega-
tively impact the fresh updates, allowing the server model to re-
ceive more generalized updates while maintaining the correct gra-
dient direction of the current model state.

BiasPrompt+ achieves the best accuracy among the ablation meth-
ods, signifying that combining the communication-efficient mod-
ule BiasPrompt and gradient surgery-based aggregation strategy
effectively reduces wall-clock time, increases client participation,
and mitigates risks from stale gradients.

V. Single State Metric for DPCSM
The single state metric, which is also called ST-Client-Ratio,
can be modified from StatMC-R. Specifically, given the baseline
dataset of N states and the specified ddl, we conduct a Monte
Carlo simulation of a real FL training process with these states and
use Algorithm S4 to derive the number of successful participation
times Si for each state. Using this information, we calculate the
single metric for the ith state (i = 1, · · · , N) by comparing the
simulated number of successful participation times of each state
(which accounts for state heterogeneity) with the ideal number of
successful participation times Sideal (which assumes a homoge-
neous setting) as:∫ ddl

0

Clip(Si, 0,Sideal)
Sideal

p
(
ticost

)
dticost, (18)

where ticos, Sideal are defined the same as in StatMC-R.
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egy.

VI. Additional Results
VI.1. Additional Results of State and Interplay Het-

erogeneity Metrics
Similar to device heterogeneity metrics, ddl and specified propor-
tion rate are two important factors that affect both FL performance
and metric values. We further explore the alignment of our state
and interplay metrics across different ddl and specified proportion
rate.

Additional validation experiments for state metrics: For
state metrics, we conduct additional experiments with ddl ∈
{60, 120, 180} and specified proportion rate pr ∈ {1, 0.8}. Here
we use different ddl sets with larger intervals than those used in
device heterogeneity experiments to make results more discrimi-
natory. As shown in Fig. S6, even with 3 different ddl settings,
StatMC-R consistently exhibits a high correlation with prediction
accuracy of FedAVG on COVID-FL and OpenImage. Moreover, it
is noteworthy that StatMC-T exhibit a higher Pearson correlation
coefficient r (> 0.91) when using 2 different specified proportion
rates, as depicted in Fig. S7. These results further demonstrate our
metrics’ effectiveness and scalability.

Additional validation experiments for interplay metrics: For
interplay metrics, we conduct additional experiments with ddl ∈
{98, 120, 136} and specified proportion rate pr ∈ {1, 0.8}. Here
ddl uses the same ddl sets as in device heterogeneity experiments,
as it can cover a wide range of cases. As depicted in Fig. S8, as ddl
increases, the test accuracy improves with InterMC-R, exhibiting
strong consistency with high Pearson correlation coefficient r (>
0.89). Similarly, when the specified proportion rate is set to 0.8
in Fig. S9, the metrics still exhibit strong correlation (r > 0.93),
indicating their robustness in assessing the impact of heterogeneity
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Figure S8. InterMC-R vs. test accuracy with 3 different ddl on
COVID-FL/OpenImage using deadline-based strategy.
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Figure S9. InterMC-R vs. training time with 2 different specified
proportion rates on COVID-FL/OpenImage readiness-based strat-
egy.

on FL performance.

In summary, these additional validation experiments demonstrate
the scalability and effectiveness of our state and interplay metrics
across different ddl values and specified proportion rates, captur-
ing key attributes affecting real-world FL performance. With our
metrics, we believe that FL designers can comprehensively assess
device/state heterogeneity and address related issues, ultimately
leading to the development of more robust and efficient FL sys-
tems.

VII. Generalization to Other Baseline Network
and Datasets

Effective device and state heterogeneity assessing metrics should
be independent of baseline network and dataset. Here, we conduct
experiments to validate the generalization of our metrics on an ex-
tra Cifar10 [28] dataset using ViT, and on OpenImage, COVID-FL,
and Cifar10 dataset using ResNet50 [19] as baseline network.

VII.1. Generalization to Cifar10
For the Cifar10 dataset, we randomly assign 10 images to each
client’s local training set, and use the original test set as our
global test set. We set the total communication rounds to 3000
in deadline-based strategy and set the target accuracy to 97% in
validation of device metrics and 95% in validation of both state
metrics and interplay metrics for readiness-based strategy. Other
experimental settings remain consistent with those in Sec. 5.2. We
present the results in Fig. S10 and Fig. S11. We observe strong
correlations (r > 0.81) which indicate our metrics’ scalability to
other datasets.
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Figure S10. DevMC-R, StatMC-R and InterMC-R vs. test accuracy on Cifar10 with ViT.
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Figure S11. DevMC-T, StatMC-T and InterMC-T vs. training time on Cifar10 with ViT.
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Figure S12. DevMC-R vs. test accuracy on OpenImage, COVID-FL, and Cifar10 with ResNet50.

VII.2. Generalization to ResNet50
To verify the scalability of our metrics across network architec-
tures, we then change the baseline network from ViT used in the
paper to ResNet50 and conduct experiments across OpenImage,
COVID-FL and Cifar10 datasets. We scale the ddl to {26, 28, 36}
according to the model size and keep other experimental settings
the same as in Sec. 5.2. The results are presented in Fig. S12-S17.
Remarkably, our device, state, and interplay metrics continue to
exhibit a strong correlation with FL performance under different
network structures and datasets. The Pearson correlation coeffi-
cient r consistently surpass 0.77 for both deadline-based strategy
and readiness-based strategy, indicating the irrelevance of our met-
rics to the network structure.

VII.3. Comparison to Other FL Methods
We compare BiasPrompt+ to the latest SOTA TimelyFL [66] on
OpenImage. We use the same device and state datasets used
in Tab. 2. For TimelyFL, we assume that the device speed is known
and update the partial layers based on ddl and the current device
speed. As depicted in Tab. S1, BiasPrompt+ outperforms Time-
lyFL for all degrees of heterogeneity and strategies. In addition,
TimelyFL also struggles with increased device and state hetero-
geneity, which may be due to the fact that only a small fraction
of the network parameters are updated in order to maintain client
participation rates.
Table S1. Test accuracy↑ and training time↓ (separated by /)
on OpenImage. We compare BiasPrompt+ with the latest Time-
lyFL using ViT. We also show the results of BiasPrompt+ using
ResNet50 (R in Table) and compare it to FetchSGD.

InterMC-R BiasPrompt+ TimelyFL
0.56 (severe) 35.75/8.6h 12.86/97h

0.73 (moderate) 33.79/2.2h 18.98/78h
0.86 (mild) 35.24/1.4h 24.41/61h



107 109
Training time

102

104

De
vM

C-
T

OpenImage
 r=1.000

107 109
Training time

102

104

De
vM

C-
T

COVID-FL
 r=1.000

106 108
Training time

102

104

De
vM

C-
T

Cifar10
 r=1.000

Figure S13. DevMC-T vs. training time on OpenImage, COVID-FL, and Cifar10 with ResNet50.
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Figure S14. StatMC-R vs. test accuracy on OpenImage, COVID-FL, and Cifar10 with ResNet50.
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Figure S15. StatMC-T vs. training time on OpenImage, COVID-FL, and Cifar10 with ResNet50.
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Figure S16. InterMC-R vs. test accuracy on OpenImage, COVID-FL, and Cifar10 with ResNet50.
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Figure S17. InterMC-T vs. training time on OpenImage, COVID-FL, and Cifar10 with ResNet50.
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