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1. Introduction
In the main paper, we have provided quantitative compar-
isons with some existing methods as well as the ablation
studies. In this supplementary material, we first provide de-
tails of evaluation metrics. Then, we compare our method
with more methods. Afterwards, we verify the transferabil-
ity and zero-shot ability of our proposed method. In addi-
tion, we further validate the effectiveness of MCP and PMS
through more ablation results. Finally, we present some vi-
sual results to show the effects of key modules.

2. Evaluation Metrics
In this section, we provide details of the five evaluation met-
rics used to assess compared models. With these metrics,
we can comprehensively and adequately demonstrate the
superior performance of our model.

1) The Mean Intersection over Union (mIoU) is com-
puted by first determining the Intersection over Union (IoU)
for each individual class, and then averaging these values
across all classes. It can be represented as:

IoU =
|A ∩B|
|A ∪B|

,mIoU =
1

C

C∑
i=1

IoUi, (1)

where A represents the predicted values for a certain class
and B represents the true values of that class.

2) The weighted F-measure (Fw
β ) is determined by com-

puting the Fβ score for each class and then weighting each
class’s contribution according to its occurrence frequency
in the dataset. This metric can emphasize the performance
on less-represented classes. It can be represented as:

Fβ =

(
1 + β2

)
× Precision ω × Recall ω

β2 × Precision ω + Recall ω (2)

where Precision and Recall are the precision and recall
scores. β is a parameter to trade-off the precision and recall.
It is usually set to 0.3.

3) The structural similarity measure (Sα) [4] is a metric
used to evaluate the structural similarity between two im-
ages. Sα aligns more closely with the human visual judg-
ment of image quality.

4) The Mean Enhanced-Alignment Measure (mEϕ) [40]
is a metric that merges local pixel information and overall
image means into a single score. This metric effectively
captures both the global statistics of the image and the nu-
ances of local pixel alignments.

5) The Mean Absolute Error (MAE) quantifies the av-
erage of the absolute discrepancies between the prediction
and the ground truth. It offers an overall assessment with-
out considering class boundaries. Superior performance is
reflected in lower MAE values. It can be represented as:

MAE(p, g) =
1

m

m∑
i=1

|pi − gi| (3)

where p is the prediction and g is the ground truth. m is the
pixel number.

With the aforementioned five metrics, we can fully as-
sess the overall completeness of mask predictions while
ensuring the reliability of object boundaries. Therefore,
achieving optimal results across these five metrics can suf-
ficiently demonstrate the effectiveness of our model.

3. More Comparison Results
In the main paper, we compare most recent methods. Here,
we present more comparison results corresponding to more
methods. As shown in Tab. 1, Tab. 2 and Tab. 3, the exper-
imental results fully demonstrate the effectiveness of our
proposed method.

4. Transferability and Zero-shot Ability
In fact, our model can adapt to other complex tasks, such as
saliency detection, camouflaged object detection and polyp
segmentation. To verify this fact, we conduct zero-shot and
transferability testing on other datasets with large domain
gaps, i.e., DUTS [39], COD10K [5] and Kvasir [14]. As
shown in Tab. 4, our method also achieves better results than
other SAM-based methods and task-specific ones. These
results clearly verify the generalization of our method. In
addition, since we freeze SAM’s encoder, it somewhat pre-
serves the zero-shot ability. As shown in Tab. 4, our method
delivers comparable results with SAM, showing an expres-
sive zero-shot ability.

5. More Ablation Results on MCP and PMS
Experiments are conducted on MAS3K [19] for its chal-
lenging and high-quality annotations.

Effects of MCP. For MCP, we first enhance the fea-
tures through a self-attention mechanism, and then inte-
grate the features extracted from SAM by using a cross-
attention mechanism. In Tab. 5, we compare the effective-
ness of these internal components of MCP. In the second



MAS3K RMAS
Method mIoU Sα Fw

β mEϕ MAE mIoU Sα Fw
β mEϕ MAE

UNet++ [60] 0.506 0.726 0.552 0.790 0.083 0.558 0.763 0.644 0.835 0.046
BASNet [34] 0.677 0.826 0.724 0.862 0.046 0.707 0.847 0.771 0.907 0.032
PFANet [54] 0.405 0.690 0.471 0.768 0.086 0.556 0.767 0.582 0.810 0.051
SCRN [44] 0.693 0.839 0.730 0.869 0.041 0.695 0.842 0.731 0.878 0.030
U2Net [35] 0.654 0.812 0.711 0.851 0.047 0.676 0.830 0.762 0.904 0.029
SINet [5] 0.658 0.820 0.725 0.884 0.039 0.684 0.835 0.780 0.908 0.025

PFNet [29] 0.695 0.839 0.746 0.890 0.039 0.694 0.843 0.771 0.922 0.026
RankNet [27] 0.658 0.812 0.722 0.867 0.043 0.704 0.846 0.772 0.927 0.026
C2FNet [37] 0.717 0.851 0.761 0.894 0.038 0.721 0.858 0.788 0.923 0.026
ECDNet [20] 0.711 0.850 0.766 0.901 0.036 0.664 0.823 0.689 0.854 0.036
OCENet [21] 0.667 0.824 0.703 0.868 0.052 0.680 0.836 0.752 0.900 0.030
ZoomNet [31] 0.736 0.862 0.780 0.898 0.032 0.728 0.855 0.795 0.915 0.022
MASNet [9] 0.742 0.864 0.788 0.906 0.032 0.731 0.862 0.801 0.920 0.024
SETR [57] 0.715 0.855 0.789 0.917 0.030 0.654 0.818 0.747 0.933 0.028

TransUNet [1] 0.739 0.861 0.805 0.919 0.029 0.688 0.832 0.776 0.941 0.025
H2Former [10] 0.748 0.865 0.810 0.925 0.028 0.717 0.844 0.799 0.931 0.023

SAM [16] 0.566 0.763 0.656 0.807 0.059 0.445 0.697 0.534 0.790 0.053
SAM-Adapter[2] 0.714 0.847 0.782 0.914 0.033 0.656 0.816 0.752 0.927 0.027
SAM-DADF [17] 0.742 0.866 0.806 0.925 0.028 0.686 0.833 0.780 0.926 0.024

Dual-SAM 0.789 0.884 0.838 0.933 0.023 0.735 0.860 0.812 0.944 0.022

Table 1. Performance comparison on MAS3K and RMAS. The best and second results are in red and blue, respectively.

UFO120 RUWI
Method mIoU Sα Fw

β mEϕ MAE mIoU Sα Fw
β mEϕ MAE

UNet++ [60] 0.412 0.459 0.433 0.451 0.409 0.586 0.714 0.678 0.790 0.145
BASNet [34] 0.710 0.809 0.793 0.865 0.097 0.841 0.871 0.895 0.922 0.056
PFANet [54] 0.677 0.752 0.723 0.815 0.129 0.773 0.765 0.811 0.867 0.096
SCRN [44] 0.678 0.783 0.760 0.839 0.106 0.830 0.847 0.883 0.925 0.059
U2Net [35] 0.680 0.792 0.709 0.811 0.134 0.841 0.873 0.861 0.786 0.074
SINet [5] 0.767 0.837 0.834 0.890 0.079 0.785 0.789 0.825 0.872 0.096

PFNet [29] 0.570 0.708 0.550 0.683 0.216 0.864 0.883 0.870 0.790 0.062
RankNet [27] 0.739 0.823 0.772 0.828 0.101 0.865 0.886 0.889 0.759 0.056
C2FNet [37] 0.747 0.826 0.806 0.878 0.083 0.840 0.830 0.883 0.924 0.060
ECDNet [20] 0.693 0.783 0.768 0.848 0.103 0.829 0.812 0.871 0.917 0.064
OCENet [21] 0.605 0.725 0.668 0.773 0.161 0.763 0.791 0.798 0.863 0.115
ZoomNet [31] 0.616 0.702 0.670 0.815 0.174 0.739 0.753 0.771 0.817 0.137
MASNet [9] 0.754 0.827 0.820 0.879 0.083 0.865 0.880 0.913 0.944 0.047
SETR [57] 0.711 0.811 0.796 0.871 0.089 0.832 0.864 0.895 0.924 0.055

TransUNet [1] 0.752 0.825 0.827 0.888 0.079 0.854 0.872 0.910 0.940 0.048
H2Former [10] 0.780 0.844 0.845 0.901 0.070 0.871 0.884 0.919 0.945 0.045

SAM [16] 0.681 0.768 0.745 0.827 0.121 0.849 0.855 0.907 0.929 0.057
SAM-Adapter [2] 0.757 0.829 0.834 0.884 0.081 0.867 0.878 0.913 0.946 0.046
SAM-DADF [17] 0.768 0.841 0.836 0.893 0.073 0.881 0.889 0.925 0.940 0.044

Dual-SAM 0.810 0.856 0.864 0.914 0.064 0.904 0.903 0.939 0.959 0.035

Table 2. Performance comparison on UFO120 and RUWI. The best and second results are in red and blue, respectively.



USOD10k
Method Sα mEϕ maxF MAE
Itti [13] .6112 .6670 .4676 .1798

RCRR [47] .6449 .6898 .5592 .1831
DF [36] .6410 .7576 .5589 .1400

CPD [43] .9076 .9484 .8991 .0290
DMRA [32] .8746 .9274 .8682 .0422

SAMNet [54] .8875 .9382 .8739 .0396
PoolNet [22] .9152 .9562 .9105 .0283
BASNet [34] .9075 .9378 .8849 .0352
EGNet [53] .9125 .9488 .9040 .0291

FC-SOD [49] .7036 .7004 .6231 .0852
LDF [42] .9135 .9574 .9173 .0260

F3Net [41] .9140 .9599 .9171 .0251
PFPN [38] .9090 .9547 .9055 .0302
MINet [30] .9105 .9501 .9072 .0287

DASNet [52] .9204 .9603 .9212 .0245
JL-DCF [8] .9062 .9485 .8978 .0300
UCNet [50] .8997 .9463 .8968 .0301
S2MA [23] .8664 .9208 .8530 .0558
BBSNet [7] .9061 .9512 .9056 .0337
DANet [55] .9006 .9449 .8934 .0279

SGL-KRN [45] .9214 .9633 .9245 .0237
DCF [15] .9116 .9541 .9045 .0312

SPNet [58] .9075 .9554 .9069 .0280
HAINet [18] .9123 .9552 .9116 .0279

VST [25] .9136 .9614 .9108 .0267
TriTransNet [26] .7889 .8479 .7501 .0659

CSNet [3] .8595 .9178 .8462 .0548
D3Net [6] .8931 .9413 .8807 .0374

SVAM-Net [12] .7465 .7649 .6451 .0915
BTS-Net [51] .9093 .9542 .9104 .0291
CDINet [48] .7049 .8644 .7362 .0904
CTDNet [56] .9085 .9531 .9073 .0285
MFNet [33] .8425 .9146 .8193 .0512
PFSNet [28] .8983 .9421 .8966 .0370

PSGLoss [46] .8640 .9078 .8508 .0417
TC-USOD [11] .9215 .9683 .9236 .0201

SAM [16] .8543 .9095 .8812 .0380
SAM-Adapter [2] .8952 .9533 .9153 .0276
SAM-DADF [17] .9051 .9552 .9154 .0250

Dual-SAM .9238 .9684 .9311 .0185
Table 3. Performance comparison on USOD10k. The best and
second results are in red and blue, respectively.

and third rows, we list the results of using the self-attention
mechanism (SonlyMCP) and the cross-attention mechanism
(ConlyMCP), respectively. Compared with the whole MCP
structure in the last row, it indicates that both mechanisms
have a positive effect.

Effects of PMS. In Tab. 6, we compare the impact of us-
ing mutual supervision at different decoder layers. “1 PMS”

DUTS (SOD) COD10K (COD) Kvasir (Medical)
Method Fw

β MAE Fw
β MAE Fw

β MAE
VST [24] 0.828 0.037 —– —– —– —–

PFNet [29] —– —– 0.660 0.040 —– —–
FAPNet [59] —– —– —– —– 0.894 0.027

SAM [16] 0.764 0.058 0.633 0.050 0.769 0.062
SAM-Adapter [2] 0.878 0.029 0.801 0.025 0.876 0.029
Ours (zero-shot) 0.783 0.048 0.677 0.044 0.696 0.082

Ours 0.885 0.025 0.889 0.012 0.909 0.025

Table 4. Performance comparison on other complex tasks.

refers to the incorporation of the mutual supervision mod-
ule in the first layer of the decoder, and the other defini-
tions follow similarly. As the number of layers increases,
the performance gradually improves. We can observe that
mutual supervision has a positive effect. With mutual su-
pervision between the two branches, the objects’ details are
adequately complemented.

Method mIoU Sα Fw
β mEϕ MAE

no MCP 0.778 0.877 0.825 0.929 0.026
Sonly MCP 0.779 0.878 0.828 0.931 0.026
Conly MCP 0.783 0.879 0.832 0.931 0.025
MCP 0.789 0.884 0.838 0.933 0.023

Table 5. Performance comparisons of MCP.

Method mIoU Sα Fw
β mEϕ MAE

no PMS 0.771 0.874 0.820 0.923 0.029
1 PMS 0.776 0.876 0.823 0.926 0.027
2 PMS 0.779 0.878 0.827 0.927 0.026
3 PMS 0.783 0.880 0.830 0.932 0.025
4 PMS 0.789 0.884 0.838 0.933 0.023

Table 6. Performance comparisons with different layers of PMS.

6. More Visual Results
In the main paper, we have already presented a visual com-
parison of typical methods. In this supplementary material,
we provide more visual results to verify the effects of our
proposed key modules.

Visual Results with Key Modules. In Fig. 1, we show
the visual effect of our C3P module. One can observe that
our C3P module helps to obtain a better overall shape of un-
derwater targets. The binary cross-entropy loss and nearby
connectivity prediction are not good at predicting the ani-
mal boundaries In Fig. 2, we show the visual effect of our
PMS module. By employing dual branches for mutual su-
pervision, the segmentation maps have comprehensive in-
formation, effectively removing redundant information. In
Fig. 3, we show the visual effect of our MCP module.
With the multi-level coupled guidance, SAM has gained
enhanced representational capabilities for animals and sup-
pressed the cluttered backgrounds. In Fig. 4, we show the



(a) Image (b) GT (c) C3P (d) Binary (e) Nearby

Figure 1. Visualizing the effect of our C3P module.

(a) Image (b) GT (c) PMS (d) Single (e) Dual

Figure 2. Visualizing the effect of our PMS module.

(a) Image (b) GT (c) MCP (d) no MCP

Figure 3. Visualizing the effect of our MCP module.

(a) Image (b) GT (c) DFAM (d) no DFAM

Figure 4. Visualizing the effect of our DFAM module.

visual effect of our DFAM module. We integrate the fea-
tures extracted from both the encoder and decoder through
the DFAM module, and select more important feature chan-
nels. The design can adaptively aggregate more contextual
information and significantly improve the segmentation re-
sults. In Fig. 5, we show the visual effect of our adapter
mechanism. One can observe that our method effectively
injects underwater domain information into the SAM back-
bone. Furthermore, the use of our dual adapter mechanisms
continues to have a positive impact on the performance.

Visualization of Failed Results. In Fig. 6, we
present some failure cases. Due to the similarity
between the animal and its environment, it is chal-
lenging for our model to capture it accurately. How-
ever, other existing methods also result in significant
segmentation errors. Therefore, distinguishing such or-
ganisms has become a focus of our further efforts.
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