
A. Appendix Section
A.1. Graph Signal Processing theory

Graph Shift A graph G can be represented in

the form of (V,A), where V is the set of nodes

{v0, v1, . . . , vN−1}, N = |V| and A ∈ C
N×N is the

graph shift, or the weighted adjacency matrix. A graph

shift can reflect the connections of the graph for the edge

weight is a quantitative representation between nodes.

When a graph shift acts on a graph signal, it can represent

the diffusion of the graph signal. A graph shift is usually

normalized for proper scaling, ensuring ||A||spec = 1.

Graph Signal Given a graph G = (V,A), a graph signal

on this graph can be seen as a map assigning each node vi
with a value xi ∈ C. If the order of the nodes is fixed,

then the graph signal is defined as a N dimensional vector

x = (x1, x2, . . . , xN).

Graph Fourier Transform In general, a fourier trans-

form is the expansion of a signal on a set of bases. When

performing graph fourier tansform, the signal refers to the

graph signal and the bases are the eigenbasis of the graph

shift, or the Jordan eigenbasis if a complete eigenbasis is not

available. To be specific, a graph shift A is eig-decomposed

into A = V ΛV −1. The eigenvalues represent the frequen-

cies on the graph. The fourier transform of a graph signal x,

therefore, is defined as x̂ = V −1x and the inverse transform

is x = V x̂. x̂ describes the content of different frequency

components in the graph signal x.

Graph Filtering A graph filter is a type of system that

accepts a graph signal as input and then generates another

graph signal as output. If the graph signal is described as

x ∈ C
n, then any matrix A ∈ C

n×n can be seen as a graph

filter and Ax ∈ C
n is the output signal. For instance, a

graph shift can be a graph filter, replacing the signal value

at a node with a weighted linear combination of values at its

neighbors. In fact, every linear, shift-invariant graph filter

can be formulated as a polynomial in the graph shift

H =

l=L−1∑
l=0

hlAl

where H is the graph filter represented with the graph shift

A. hl is the coefficient and L is the length of the graph filter.

A.2. Problem Formulation

For two input point clouds, P s and P t, a correspondence set

C is created using either hand-crafted or learned descrip-

tors. Each correspondence, represented by c ∈ C, con-

sists of a pair of points (ps, pt), where ps and pt are points

in P s and P t respectively. These correspondences can be

modelled as a graph, G, where each node denotes a corre-

spondence, and the edge weights measure the compatibility

between nodes. Our approach aims to decrease the size of

the correspondence graph G and employ the sampled cor-

respondences for computing the 6-DoF pose transformation

between P s and P t, instead of utilising the original corre-

spondence set C.

A.3. Correspondence Generation

Though our focus is not primarily on the creation of cor-

respondences, it is crucial to understand how they are gen-

erated due to our approach’s reliance on them. As such,

we include this section. Point cloud descriptors aim to

characterise local geometry. Hand-crafted designs[51] or

deep learning methods[17][1][69][30] have been employed

in previous studies to create descriptors. As long as point-

wise descriptors are defined, the matchability score can be

calculated to form correspondences.

We denote the descriptor for point xi as fi. Then the

matchability score is defined using L2 euclidean distance:

d(xi, xj) = ||fi − fj ||2

Then for each point xi, find the corresponding point

xki
with the highest matchability score, namely the near-

est neighbor. Now a correspondence is generated:

ci = (xi, xki
)

A.4. Graph Construction

As show in Fig. 2, given a set of input correspon-

dences C, we first construct a compatibility graph. Each

node of the graph is a correspondence denoted as ci =
(xi, yi, zi, ui, vi, wi). We further denote psi = (xi, yi, zi)
and pti = (ui, yi, zi). As can be seen, ci is tuple of six ele-

ments, composed of coordinates of the source point psi and

the target point pti. We first define the distance between cor-

respondences as Sdist(ci, cj) =

∣∣∣∣||psi − psj || − ||pti − ptj ||
∣∣∣∣.

With this, we compute the pair-wise compatibility between

correspondences, or the edge weight in the correspondence

graph.

Wij =

{
1− Sdist(ci,cj)

2

2×d2
cmp

1− Sdist(ci,cj)
2

2×d2
cmp

> t

0 otherwise
(7)

where dcmp and t are hyperparameters. We then define

the adjacency matrix WSOG of the graph as: WSOG =
W � (W ×W).In this way, we build a graph on the given

correspondence set C. And we denote this graph as Gcorr.

A.5. Optimality Proof

We claim our stochastic method is an approximation to an

optimal sample operator. To prove this, we first define the

object function

min
π

EΨ∼π||SΨTΨf(X)− f(X)||22 (8)

where Ψ is the sample operator relying on π and SΨT is the

interpolation recovery operator. f is the LapLacian high-

pass filter we use and X is our generalized degree signal.

The optimization problem is then formulated as

min
π

EΨ∼π||SΨTΨf(X)− f(X)||22
s.t.

∑
πi = 1, π > 0

(9)

To solve this, we use a Lagrange function

L(πi, λ, μ)

=EΨ∼π||SΨTΨf(X)− f(X)||22
+ λ(

∑
πi − 1) +

∑
μiπi

=||EΨ∼π(SΨ
TΨf(X))− f(X)||22+

EΨ∼π||SΨTΨf(X)− EΨ∼π(SΨ
TΨf(X))||22+

+ λ(
∑

πi − 1) +
∑

μiπi

(10)

The first item is zero, proved simply by

EΨ∼π(SΨ
TΨf(X))i

=EM(
∑

Mj∈M
SMjMj

fMj
(X)δMj ,i)

=M
∑
k

1

Mπk
fk(X)πkδk,i

=fi(X)

(11)

where M is the sample set with M to be its size.

The second item can be deduced to

EΨ∼π||(SΨTΨf(X))i − EΨ∼π(SΨ
TΨf(X))i||22

=EM(
∑

Mj ,Mj′∈M
SMjMjSMj′Mj′ fMj (X)T fMj′ (X)

δMj ,iδMj′ ,i)

=M2
∑
k

fk(X)T fk(X)

M2π2
k

πkδk,i − fi(X)T fi(X)

=(
1

πi
− 1)fi(X)T fi(X)

(12)

Therefore, the Lagrange function can be written as

∑
i

(
1

πi
− 1)||fi(X)||22 ++λ(

∑
πi − 1)+

∑
μiπi (13)

By setting its derivative to zero and with the complemen-

tary slackness, we have the final result.

μiπi = 0, πi =
||fi(X)||2√

λ+ μi

(14)

A.6. Experimental Setup

Datasets. We consider three main datasets, i.e, the out-

door dataset KITTI[26], the indoor dataset 3DMatch[70]

and its low-overlap version 3DLoMatch[30]. For KITTI,

we follow the preprocess schedule of previous work[2]

[13][71] and obtain a test set of 555 pairs of point clouds.

3DMatch is a scene-scale indoor dataset and 3DLoMatch is

its subset with overlap rate ranges from 10% to 30%, bring-

ing greater challenges for accurate registration.

Evaluation Criteria. We follow the common evaluation

criteria in 3D registration, i.e, the rotation error (RE), the

translation error (TE) and the recall or success rate (RR).

RE measures the angular difference between the estimated

rotation matrix and the ground truth or reference rotation

matrix. TE is computed as the euclidean distance between

the estimated translation vector and the ground-truth, and

is given in centimetres. By referring to the settings in

[18], registration is considered successful when RE≤ 15◦

and TE≤ 30cm on 3DMatch and 3DLoMatch datasets, and

RE≤ 5◦ and TE≤ 60cm on the KITTI dataset. RR is then

defined as the success ratio of all point cloud pairs.

Implementation Details. Our FastMAC consists of a

sampling process implemented in PyTorch for cuda

computation and then the original Maximal Clique

Registration[71] process based on C++. Our method ac-

cepts initial correspondences as input, which are gener-

ated using Fast Point Features Histograms (FPFH) [51] and

Fully Convolutional Geometric Features (FCGF) [17] as ba-

sic descriptors for both KITTI and 3DMatch&3DloMatch.

Hyperparameters like dcmp and t mentioned in Sec. 3 are

set to default values, i.e, 0.1 and 0.999 respectively. The

Maximal Clique Registration process remains exactly the

same implemented in [71], with the same parameter value

settings. All experiments were implemented with an Intel

i5-13600KF CPU and a single NVIDIA RTX4070ti. When

comparing with baseline methods, we use their default pa-

rameters in their released code to ensure fairness.

A.7. Additional Experiments

The following table demonstrates the extension result of

our Time-performance Trade-off experiments. Results for

RE and TE are further shown. FastMAC performs better

than all previous methods when sample ratio is 50%. With

lower sample rate, RR and TE still remain competitive, with

time loss decreasing dramatically, indicating its potential

for real-time application.

Methods ratio RR(%) RE (◦) TE(cm) Time(ms)

RANSAC 1K[23]

100

56.58 1.74 33.12 19.9

RANSAC 10K[23] 88.47 1.15 25.33 158.4

RANSAC 100K[23] 94.77 0.77 17.83 1549.7

DGR[18] 95.14 0.43 23.28 330.1

PointDSC[2] 96.40 0.61 13.42 131.0

PointDSC(50k)[2] 96.40 0.51 11.53 722.4

PointDSC(icp)[2] 96.76 0.51 11.20 130.5

SC2-PCR[13] 97.12 0.41 9.71 851.1

MAC[71] 97.25 0.36 8.00 573.0

FastMAC

50 97.84 0.36 7.98 114.4
20 97.48 0.38 8.20 28.1
10 97.30 0.43 8.70 18.2
5 97.12 0.52 9.92 16.1
1 71.56 1.02 15.24 15.5

Table 6. Comparison on RR, RE and TE with SOTA methods

on the KITTI dataset with FCGF descriptor. The best results

are marked in bold. RANSAC − k denotes RANSAC with

k iterations. PointDSC(50K): PointDSC with 50k iterations of

RANSAC. PointDSC(icp): with icp refinement.

