Frozen CLIP: A Strong Backbone for Weakly Supervised Semantic
Segmentation

Supplementary Material

In the supplementary material, we will show some de-
tails about how to generate the initial CAM, the framework
for the fully-supervised case and provide more experimen-
tal results to verify our WeCLIP.

1. Initial CAM Generation

We follow [3] to generate the initial CAM. For a given im-
age I with class label set C'y, the image is input to the frozen
CLIP image encoder to generate the image feature map as
F € R¥(hw)  after passing global average pooling, the
feature vector F,, € R x 1 is generated. Meanwhile, The
class labels set Cy, with the pre-defined background label
set Cyg [3], are used to build text prompts using the text “a
clear origami {x}”, where * is the specific class label. Then
the text prompts are input to the text encoder to generate
the feature map F} € REX(ICT[+[Crg)) Using F), and F, the
distance is compute as:
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Then, the distance is passed to the softmax function to
generate the class scores:

S¢ = softmax(D/T), 2)

where S¢ is the classification score for class ¢, and ¢ €
{Cyg, C1}, T is the temperature parameter.

Using GradCAM [4], we can generate the feature weight
map for a specific class c in the kth channel:
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where ¢ € {Chg, Cr} and ¢/ € {Cyy, Cr}.

Finally, the initial CAM for the specific foreground class
¢ is computed as:
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For more details, please refer to [3].

2. More Experimental Results

To show the effectiveness of our approach, we compare
the quality of the pseudo labels with other multi-stage ap-
proaches in Tab. 1. Since our WeCLIP is a single-stage solu-
tion, we directly use segmentation predictions as the pseudo

Table 1. Performance comparison about the generated pseudo la-
bels between our approach and others on PASCAL VOC 2012
train set. Note that we regard WeCLIP as a pseudo label gener-
ation method and directly use its predictions as the pseudo labels.

Method Pub. Sup. mloU(%)
RIB [2] NeurIPS’21 1 70.6
MCTformer [7] CVPR’22 1 69.1
ACR [1] CVPR’23 I 72.3
CLIMS [6] CVPR’22 I+L  70.5
CLIP-ES [3] CVPR’23 +L  75.0
ours-WeCLIP - I+L  78.2

labels for comparison. In other words, by using the pre-
diction as the pseudo labels, our approach can be regarded
as a pseudo label generation part of the multi-stage solu-
tion, which aims to provide high-quality pseudo labels to
train an individual segmentation model. It can be seen that
our approach significantly outperforms other approaches.
For example, compared to the CLIP-based solutions such
as CLIMS [6] and CLIP-ES [3], our approach brings out
more than 3% mloU increase. Fig. 1 shows some qualita-
tive comparisons, which also illustrates our approach can
generate high-quality pseudo labels. Ours are more com-
plete and smooth.

Table 2. Ablation study of the input frozen image features for
decoder on PASCAL VOC 2012 val set. ““1, 5, 8, 11, 12” indicates
the value of Ny. For example, No = 1 means that frozen image
features from 1 to 12 layers (all layers) are selected as input for
the decoder.

=12
{FL 1 5 8 112

I=Ng
mloU (%) 749 747 746 745 743

In Tab. 2, we conduct the ablation study to illustrate the
influence of different frozen image features, which are se-
lected as input for our decoder. When Ny = 1, image fea-
tures from all blocks in the frozen image encoder are se-
lected, and the best performance is generated. Besides, Ny
from 1 to 12, the mIoU score is decreased from 74.9% to
74.3%, indicating that fewer features are selected, and lower
performance is generated. The possible reason is that using
all features has a more comprehensive semantic representa-
tion.

Tab. 3 is the ablation study for the different supervision
signals of Ay. M, means using the online pseudo labels for
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Figure 1. Qualitative comparison about the generated pseudo labels between our approach and CLIP-ES [3] on PASCAL VOC 2012 train

set. Our approach generates more accurate pseudo labels.

Table 3. Ablation study for the supervision of Ay. M), is the online
pseudo labels, P is the final prediction. simultaneously using M,
and P means using the intersection between M), and P.

A
M, argmax(P) mloU (%)
v 74.9
v 74.6
v v 74.8

A. argmax(P) means using the final prediction P for A.
The last row means using the intersection between M, and
P for A. It can be found that when using the pseudo label
M, to produce A as supervision, it achieves 74.9% mloU,
which performs better than the other two cases. Using the
prediction P cannot bring a higher mloU score since P is
updated during training, and it is easy to produce conflict
supervision, leading to an ineffective learning process.

Table 4. Ablation study of the hyperparameter A for balancing the
loss function.

A 0 0.1 05 1.0
mloU 733 749 736 729

Tab. 4 shows the influence of the hyperparameter A for
balancing the loss function. When A = 0, the learning of

affinity map Ay is not supervised. It only generates a 73.3%
mloU score. This is because the uncontrolled A; makes
the filter G and refining map R unstable, thus reducing the
quality of online pseudo labels. When A = 0.1, it produces
better results than others, showing a good balance between
two loss functions.

Table 5. Influence of different multi-scales during inference.

Multi-scale mloU (%)
{1.0} 74.0
{0.5, 1.0} 74.2
{0.75, 1.0} 74.9
{0.5,0.75, 1.0} 74.4
{0.75, 1.0, 1.25} 74.8
{0.75, 1.0, 1.5} 74.5

Tab. 5 shows the influence of the multi-scale strategy
during inference. It can be seen that {0.75, 1.0} performs
better than other settings. Introducing a larger scale, such
as 1.5, does not improve the performance, showing that the
Frozen CLIP backbone is not sensitive to the large scale.

In Fig. 2, we show more feature visualization results to
compare the difference between the CLIP features and Im-
ageNet features. For each pair visualization (each column),
we randomly select 200 images from the PASCAL VOC
2012 train set. All other settings are the same as our paper.
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Figure 2. Feature visualization with T-SNE [5] to show why frozen CLIP can be used for semantic segmentation. Each color represents
one specific class. (a) Frozen ImageNet pre-trained feature of ViT-B. (b) Frozen CLIP pre-trained vision feature of VIT-B. It can be seen
that without any retraining, the features belonging to the same class from the frozen CLIP are denser and more clustered than the ImageNet
pre-trained features. Best viewed in color.
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Figure 3. Framework for fully-supervised semantic segmentation. Given an image, it passes the frozen CLIP image encoder to extract the
feature map, which is then input to our decoder to generate the final prediction.

It can be found that features belonging to the same class, be directly used for semantic segmentation. Fig. 2 indicates
pre-trained by CLIP, are denser and clustered, while fea- that the extracted features from the CLIP model can better
tures pre-trained by ImageNet are more sparse and decen- represent semantic information for different classes, making

tralized, which explains why the frozen CLIP feature can features belonging to different classes not confused. With



such discriminative features, It is more convenient to con-
duct segmentation tasks.

3. Framework for Fully-supervised Semantic
Segmentation

In Fig. 3, we show the framework of our approach for fully-
supervised semantic segmentation. We directly use our de-
coder as the decoder to learn from the provided pixel-level
supervision. Our RFM is not used as it is unnecessary to
refine the pixel-level supervision.

4. Background Text Set

We follow CLIP-ES [3] to define the background class
set. For PASCAL VOC 2012 set, the set is {ground, land,
grass, tree, building, wall, sky, lake, water, river, sea, rail-
way, railroad, keyboard, helmet, cloud, house, mountain,
ocean, road, rock, street, valley, bridge, sign}, For MS
COCO-2014, {sign, keyboard} is removed. Besides, the
text prompt for the background class is ‘a clear origami
{background class}’.
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