GeoAuxNet: Towards Universal 3D Representation Learning for Multi-sensor
Point Clouds

Supplementary Material

1. Additional Experiments
1.1. Experiment Settings

Training Methodology. The comprehensive configuration
for the joint pre-training and subsequent fine-tuning phases
is shown in Table 1. The GeoAuxNet model is subjected to
joint pre-training utilizing three distinct datasets: S3DIS [1]
and ScanNet [4] derived from RGB-D camera, and Se-
manticKITTI [2] obtained via LiDAR. To account for vari-
ations in dataset scale, we established a sampling ratio of
2:2:5 across these datasets. Subsequently, the pre-trained
GeoAuxNet model undergoes fine-tuning on each dataset
independently, employing a reduced learning rate. The to-
tal number of training iterations is equal to the sum of the
best performance necessary iteration numbers for all three
datasets.

Table 1. Detailed training settings of semantic segmentation ex-
periments.

Config Pre-training
optimizer SGD
scheduler OneCycleLR
learning rate 0.05
weight decay 1074
momentum 0.9
batch size 24
epoch 100

Network Architectures. The detailed information of our
backbone and point network is outlined in Table 2. The
point network only contains 1.1M parameters which can be
ignored compared with the voxel backbone. But it improves
the performance by about 6% in mloU on three datasets, as
illustrated in Table 3.

Table 2. Details of the network architectures in GeoAuxNet.

Config \ Voxel backbone Point network
embedding channels 32 32
encoder layers [2,3,4,6] [2,2,2,2]
encoder channels [32, 64, 128, 256] [32, 64, 128, 256]
decoder layers 2,2,2,2] [2,2,2,2]

decoder channels [256, 128,96, 96] [256, 128, 96, 96]

Table 3. Semantic segmentation results on three benchmarks. We
train the voxel backbone and GeoAuxNet on the joint training data
of three datasets. We report the mloU (%) on Area 5 of S3DIS and
validation sets of ScanNet and SemanticKITTI.

Methods ‘ S3DIS ScanNet SemanticKITTI
Voxel backbone | 63.4 64.7 57.9
GeoAuxNet 69.5(4,(;_1‘) 71.3(+(;_(,‘) 63.8(4,5_9)

1.2. Additional Results

We further conduct experiments with different training
datasets. As shown in Table 4, the observed improvements
are consistent on different selections of datasets.

Table 4. Semantic segmentation results on different selections of
training datasets. The yellow columns stand for the results of three
methods trained on S3DIS and nuScenes collectively, while the
blue columns are the results of training on ScanNet and nuScenes.
We report the mloU (%) on Area 5 of S3DIS and validation sets
of ScanNet and nuScenes.

Methods ‘ S3DIS nuScenes | ScanNet nuScenes
SPVCNN [6] 44.1 56.9 46.8 58.4
PPT [8] 63.9 65.4 65.3 65.8
GeoAuxNet 68.4 70.8 69.8 71.6

1.3. Efficiency Analysis

Auxiliary learning aims to improve the model performance
on the primary task by exploiting beneficial information
from auxiliary tasks, while auxiliary tasks can be removed
during inference. Our idea is to design a voxel network
for the primary task to maintain its efficiency, and a point
network for the auxiliary task so that it provides geometric
information and is removed during inference. While kNN
limits the efficiency, during inference we only preserve the
Geometry Pool and Geo-to-Occ Auxiliary modules without
the point network and kNN. As shown in Table 5, we vali-
date the efficiency of different models on various datasets.

2. Additional Visualization

We provide more visualizations for MinkowskiNet [3],
SPVCNN [6], PPT [8] and GeoAuxNet in Figure 1.
The limitation of learning sensor-specific information in
MinkowskiNet leads to unsatisfactory performance on the



Table 5. The inference time and throughput on data with a single NVIDIA A6000 GPU.

Method Params. ‘ Inference Time (ms) | ‘ Throughput (ins./sec.)
‘ ScanNet  SemanticKITTI nuScenes ‘ ScanNet SemanticKITTI nuScenes

PointNet++ [5] 1.0M 1987 2013 2195 96 880 300
PT [9] 7.8M 5779 5814 6298 32 268 95
PTv2 [7] 3.9M 24275 24834 27695 10 96 31
MinkowskiNet [3]  60.9M 237 245 275 728 31 2490
SPVCNN [6] 61.0M 246 244 284 550 2490 1922
PPT [8] 63.0M 402 407 471 210 1922 692
GeoAuxNet 64.7TM 267 269 303 462 692 1589

joint training benchmark. PPT only utilize voxel representa-
tions, while the point branch in SPVCNN does not provide
fine-grained geometric features. The introduction of elabo-
rate geometric information in GeoAuxNet preserves better
detailed structures for point clouds from various sensors.

3. Additional Discussion and Future Works

Benefiting from extensive training data, universal models
have achieved remarkable performance in natural language
processing and 2D vision. PPT [8] studies cross-dataset
learning in 3D vision which focuses on point clouds in dif-
ferent datasets from the same sensor. However, the domain
gap between point clouds from different sensors still lim-
its the university of 3D networks, which hampers the fu-
sion and utilization of data from diverse sensors in prac-
tice. We propose GeoAuxNet to address this issue in an
efficient way towards universal 3D representation learning.
However, high quality 3D data is limited compared with the
large corpus and numerous images. Therefore, our future
researches will be undertaken to leverage text and 2D infor-
mation for 3D universal models. Besides, more work will
need to be done for the generation of scene-level 3D data.
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Figure 1. Addtional semantic segmentation results on S3DIS [1] and ScanNet [4] from RGB

LiDAR. All methods are trained collectively on three datasets.
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