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Abstract

Due to the lack of space in the main paper, we pro-
vide more details of the proposed methods and experi-
mental results in the supplementary material. Sec. 1 pro-
vides more details about the Distortion-Aware Rectification
(DAR) Module, while Sec. 2 delves into additional details
about the experiments.

1. More details within DAR module
In this section, we provide a more detailed explanation of
some methods within the DAR module. In Sec. 1.1, we dis-
cuss the reasons for using the sliding window strategy and
its effectiveness. Sec . 1.2 provides additional details within
the Boundary Enhancement Block. Finally, Sec. 1.3 offers
more insights into the Cross-Task Complementary Fusion
(CTCF) block, providing a detailed showcase of the process
for obtaining ensemble logits.

1.1. Effectiveness of the Sliding Window Strategy

Due to the characteristics of panoramic images with a large
field of view (FoV), directly inputting the entire ERP im-
age leads to a degradation in segmentation performance for
both SAM and teacher assistant (TA). Therefore, we em-
ploy a sliding window strategy to extract local patches from
the input ERP images. Since the patches after window-
based cropping remain coherent with standard RGB images
in terms of FoV, SAM and the TA are not prone to miss-
ing the segmentation of small objects due to the oversized
FoV. Notably, in the case of SAM employing random point
prompts to generate instance masks, the vast FoV might
lead to under-sampling and, consequently, omission of in-
stance segmentation for certain small objects. According
to [9], we find that horizontal distortion quantifies the dif-
ferences in pixel distances among various projection types,
whereas vertical distortion is more uniformly distributed.
As a result, considering limited resources, in this work, we
choose the horizontal movement of windows for obtaining
patches.

1.2. More details in Boundary Enhancement Block

In the context of semantic segmentation, the presence of
long-range context can result in a significant prediction
gap between interior and boundary pixel predictions, of-
ten leading to blurred boundaries[1]. For panorama images,
suffering from distortion and deformation problems makes
obtaining accurate boundary predictions more challenging.
SAM, having been trained on a large dataset of 1 billion im-
ages, can provide high-quality boundary information com-
pared to TA. Therefore, we introduce a Boundary Enhance-
ment Block to combine the boundary predictions from SAM
and TA, obtaining a more reliable boundary map. This helps
TA and the student model alleviate the distortion problem.
To obtain the refined boundary map, we propose a bound-
ary refinement strategy, and the detailed pseudo-code is pre-
sented in Alg. 1.

For the boundary refinement strategy, our aim is to re-
construct a more reliable boundary map Bi

ref for the current
overlapping area Oi by selecting more reliable boundary
pixels from Bi

TA, Bj
TA, and Bi

SAM . Specifically, for each
pixel P i

TA in Bi
TA, we locate the pixels P j

TA and P i
SAM

at the same positions in Bj
TA, and Bi

SAM . We consider
two different conditions: firstly, if both P j

TA and P i
SAM are

boundary pixels (i.e., the value of corresponding pixels is
1), then P i

TA is considered a reliable boundary pixel.
If the above condition is not satisfied, we consider to

find the reliable boundary pixel based on SAM’s boundary
prediction. We first find the boundary pixel P v

SAM closest
to P i

SAM in the vertical direction, and then find the corre-
sponding pixels P v

TA and P t
TA at the same positions in Bi

TA

and Bj
TA, respectively. For each pixel, we consider the soft-

max value distribution of categories, and if the difference D
between the top 2 values in the distributions is below a cer-
tain threshold α, it indicates that the pixel conforms to the
distribution of boundary pixels. D is formulated as:

D = Dis(PC1
i )−Dis(PC2

i ), (1)

where the Dis denotes the softmax value of pixel distribu-
tion from TA, Ci denotes the category channel where the
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Figure 1. Illustration of the overall framework.

ith largest value in the pixel distribution is located. If ei-
ther Di of P v

TA or Dj of P t
TA is less than α, we consider

P i
SAM as a more reliable boundary pixel. If above condition

is not met, we retain the boundary pixels of Bi
TA as reliable

pixels. Finally, in Bi
ref , we assign a value of 1 to the po-

sitions corresponding to reliable boundary pixels, resulting
in a refined boundary map that benefits from the combined
boundary information provided by SAM.

1.3. More details within CTCF Block

The purpose of the CTCF block is to obtain ensemble log-
its for the window patches. This is achieved by combining
the instance masks output by SAM and the semantic seg-
mentation map output by TA. We provide our overall frame-
work (as shown in Fig. 1) here for better understanding. The
fusion mechanism involves providing reliable label assign-
ments to the instance masks output by SAM based on the
semantic map from TA. Specifically, we iterate through the
instance masks in Oi, considering different area sizes. We
define the medium-sized instance masks as those within the
area range Γ [Amin, Amax]. For medium-sized masks, we
set a higher label coverage rate (lcr) threshold θ, while for
large-sized and small-sized masks, we set a lower thresh-
old. The specific fusion mechanism is outlined in Alg. 2.
By considering masks of various sizes differently and set-
ting different thresholds, our fusion mechanism surpasses
existing fusion methods [2, 3].

2. More details in Experiments
Due to space constraints in the main paper, this section pro-
vide more details on implementation, comparisons, and ab-
lation studies.

2.1. More datasets and implementation details

Dataset. We leverage two benchmark datasets Wild-
PASS [6] and DensePASS [4] to assess the segmenta-
tion performance of the GoodSAM. The WildPASS and
DensePASS datasets both comprise the same 2000 unla-
beled panorama images gathered from 40 diverse cities for
training. For the evaluation of the WildPASS dataset, we
use an additional 500 annotated panorama images from 25
cities spanning various continents. For the DensePASS
dataset evaluation, we leverage 100 precise annotated im-
ages. The resolution of images in both datasets utilized is
400×2048.
Implementation details. We train the proposed framework
with PyTorch in 4 NVIDIA A6000 GPUs. In our experi-
mental design, we employ SAM as the teacher model within
the framework. We keep SAM frozen during our experi-
ments and utilize it solely for providing instance masks and
boundary information. For the TA and student models, we
opt for the fine-tuned Segformer [5] series, encompassing
B0-B5 variants, which come in six different sizes and ex-
hibit varying performance levels in 2D image semantic seg-
mentation. Specifically, we choose B0, B1, and B2 as our
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Figure 2. More visual comparisons based on DensePASS validation set.
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Figure 3. More visual comparisons based on DensePASS validation set.

student models and B3, B4, and B5 as our TA models for
the experiment. We employ two AdamW optimizers to up-
date the parameters of the student and TA respectively. The
initial learning rate for both optimizers is 1 × e−5 , with
an epsilon setting of 1 × e−8, and a weight decay of 5 ×
e−4. We set the window size as 400 × 512, with stride
256. The hyper-parameter α is set to 0.3. For medium-sized
masks, the area range Γ is from 100 to 1000. The thresh-

olds θ for masks of different areas are set to 0.5 and 0.7.
The hyper-parameters of weight for reliable masks are set
to 0.2. We utilize the mean Intersection-over-Union (mIoU)
as the evaluation metric.

2.2. More comparisons with existing works

Figs. 2 and 3 showcase additional visual comparisons based
on the DensePASS validation set. We compare mod-



Algorithm 1 Boundary Refinement Strategy

1: Input: The overlapping area boundary maps from TA
predictions Bi

TA, Bj
TA. The overlapping area boundary

maps from SAM Bi
SAM .

2: Output: The refined boundary map Bi
ref .

3: for Each boundary pixel P i
TA in Bi

TA do
4: Find the corresponding pixels P j

TA and P i
SAM at the

same position in Bj
TA, and Bi

SAM .
5: if Value(P j

TA)==1 & Value(P i
SAM )==1 then

6: The value of the pixel P i
ref at the position corre-

sponding to P i
TA = 1.

7: else
8: Find the boundary pixel P v

SAM closest to P i
SAM

in the vertical direction.
9: Find the corresponding pixels P v

TA and P t
TA at the

same positions in Bi
TA and Bj

TA.
10: Calculate the softmax value distribution of P v

TA

and P t
TA.

11: Calculate the Di of P v
TA or Dj of P t

TA using
Eq. 1.

12: if Di < α∥Dj < α then
13: The value of the pixel P v

ref at the position cor-
responding to P v

SAM = 1.
14: else
15: The value of the pixel P i

ref at the position cor-
responding to P i

TA = 1.
16: end if
17: end if
18: end for

θ 0/0 0.5/0.5 0.5/0.7 0.6/0.8

mIoU 47.93 49.06 49.7 49.59

Γ 0/0 100/1000 200/2000 300/3000

mIoU 49.06 49.7 49.63 49.21

Table 1. Ablation about threshold θ and Γ of the fusion module.

els with approximately similar-level parameters, includ-
ing Segformer-B3 [5], Trans4PASS-S [7], DPPASS-S [10],
DATR-S [9], and our GoodSAM-S. It can be observed
that our GoodSAM-S outperforms SoTA unsupervised do-
main adaptation (UDA) methods in ERP semantic seg-
mentation with comparable parameter sizes. Specifically,
our GoodSAM-S exhibits superior performance in complex
scenes and boundary prediction compared to other methods.
This also highlights the reliability of the ensemble logits and
refined boundary map obtained through our DAR module.

Algorithm 2 Fusion Mechanism

1: Input: The overlapping area instance masks Ii from
SAM. The overlapping area semantic map Si from TA.

2: Output: Ensemble logits Ei for the overlapping area.
3: for Each instance mask Km

i in Ii do
4: Find the same region in Si as KSem corresponds to

the instance mask Km
i .

5: Calculate the count of each label in KSem and sort
them in descending order.

6: Identify the top three labels Ya (a belongs to the num-
ber of categories) in the sorted order.

7: if the lcr of most prevalent semantic label Ymax > θ
then

8: Yinstance = Ymax.
9: else

10: Calculate the Shannon entropy value of Ya based
on Si.

11: Find the Yargmin{SE(Ya)} which the SE value is
the smallest.

12: Yinstance = Yargmin{SE(Ya)}.
13: end if
14: end for

GT𝜃: 0/0

𝛤: 0/0

𝜃: 0.5/0.7

𝛤: 100/1000

Figure 4. visual comparisons about ablation study of θ and Γ.

2.3. More ablation studies

In the CTCF block, we define the area range Γ for medium-
sized masks and lcr thresholds θ for masks of various area
levels. Tab. 1 presents the experimental results for different
θ and Γ. Fig. 4 presents visual comparisons for the fusion
results using θ and Γ.
Lcr thresholds θ. For different lcr thresholds, if we do not
set a threshold for instance masks at different area levels,
it implies that Yinstance is certain to be the most prevalent
semantic label Ymax. Through data comparison, we find
that this setting is likely to result in label assignment errors.
However, when we set different lcr thresholds for masks of
different areas, we experimentally observe that, compared



Setting Methods mIoU(%)

UDA

Trans4PASS+-S (source-only) [8] 51.48
Trans4PASS+-S (SAM-enhanced) [8] 52.77

Trans4PASS+-S + SSL [8] 52.35
Trans4PASS+-S + MPA [8] 55.24

Unsupervised GoodSAM-S(baseline) + SEPL [3] 54.93
GoodSAM-S 60.56

Table 2. Performance comparison with SAM-enhanced methods.

to the same lcr thresholds, medium-sized masks are more
likely to require SE to compute a more reliable label. When
using large thresholds, it leads to a decrease in model per-
formance. We speculate that this may be because the SE
value calculation for a more reliable label does not apply
to all situations. Therefore, we choose to use 0.5/0.7, the
model achieves the best performance.
Area range Γ. For different area ranges Γ, we try four dif-
ferent scenarios. First, when we do not set any Γ, we find
that when lcr thresholds are both 0.5, the performance is
lower because medium-sized masks are more likely to have
multiple labels with close lcr. This increases the likelihood
of incorrect label assignments. However, when we try three
different area ranges, we find that when the area range Γ is
100-1000, our GoodSAM get the best performance.
Analysis of main sources of performance improvement.
We further evaluate whether the performance improvement
obtained by GoodSAM is more reliant on the performance
of SAM or more dependent on our framework design.
From Tab. 2, We can find that compared to the previ-
ous method [8] of using SAM for pseudo label enhance-
ment, our GoodSAM-S can exceed Trans4PASS+-S+MPA
by 5.32 % mIoU on the DensePASS dataset. When training
our GoodSAM-S baseline (SAM+TA+SW) with SEPL [3],
the performance lags behind that of our GoodSAM-S by
5.63% IoU. These indicate that the performance of Good-
SAM is largely attributed to the contribution of our frame-
work, rather than SAM’s capabilities.
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