Gradient-based Parameter Selection for Efficient Fine-Tuning

Supplementary Material

A. Details of experiments
A.1. Baseline description

Vision Transformer (ViT) As a transformer-based visual
model, ViT [14] has been widely adopted in various vi-
sual tasks. Most of the experiments are conducted on pre-
trained ViT architecture in this paper. Given an input image
I € RHXWX3 before feeding the image into the Trans-
former, the image is partitioned into M patches and ap-
pended a [CLS] token for classification purposes, resulting
in final input 22 € R(M+1)xd where d is the dimension of
the features. The Transformer typically consists of multi-
ple blocks and each block contains a Multi-head Attention
layer (MHA) and two MLP layers[82].

Adapter Work in [36] proposed the Adapter method,
which inserts multiple trainable layers (termed as Adapter)
into the pre-trained Transformer encoder. Only the Adapter
is updated during the fine-tuning stage. These layers can
be inserted after either the Multi-head Attention layer or the
MLP layer. Adapter comprises two projection matrices, one
Wdown for dimension reduction and the other W for fea-
ture reconstruction to the original dimension. Specifically,
given the input z € ROM+D*4 the output of the Adapter is

y = [Wup ¢ (Wdown mT)]T (7)

where W ¢ R¥xd pydown ¢ Rdxd (where ' < d ),
and ¢ is a nonlinear activation function.

Prompt Visual prompt tuning (VPT) introduces learnable
parameters (¢.e., prompts) into the input space [43]. When
fine-tuning downstream tasks, the backbone is fixed, and
just tuning these prompts. Formally, the given input z €
RM+1)xd jg concatenated with m introduced prompts p €
R™*?_The final combined input is

' = [z;p) ®)

where 2/ € R(M+1+m)xd i]] be feed into the Transformer.
There are two versions of VPT, namely VPT-shallow and
VPT-deep. The former introduces learnable prompts solely
into the input space of the first layer, whereas the latter in-
tegrates them into each layer’s input space.

Scale and shift feature SSF attempts to scale and shift
the features between the layers of the pre-trained model by
adding a linear transform layer [58]. During fine-tuning the
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(a) One input connection (b) Two input connections
Figure 7. Different number of connections with highest gradient
value among all input connections per neuron, such as (a) selecting
only one input connection per neuron. (b) two input connections
are selected per neuron.

downstream tasks, only the linear transform layers are up-
dated while the backbone remains frozen. The transform
layer consists of two components, scale factor v € R? and
shift factor 3 € R<, for feature transformation. To be spe-
cific, given the input z € R(M+D*4 the output is calcu-
lated by

y=70z+p )
where y € R(M+1)xd 3 s the dot product.

A.2. The number of parameters on different tasks

For each neuron in the network, our GPS method selected at
least one of the connections (weight or parameter) with the
highest gradient value, among the input connections of the
neuron, as shown in Fig. 7(a). For downstream tasks that
need more learnable parameters to better fit the data, such
as those tasks with dissimilar data distributions from the up-
stream dataset (such as NABirds) or larger amounts of data
(such as CIFAR-100), our method can be easily extended
by introducing more learnable parameters. Specifically, for
each neuron, we can select multiple input connections with
the highest gradient values instead of limiting them to just
one, as shown in Fig. 7(b). Tab. 7 show the detailed statics
on the number of parameters that are selected in our paper.
For most of the tasks in this paper, we just select one of the
connections. We also explore the relationship between the
number of connections and the number of learnable param-
eters. As shown in Fig. 8, with the increase in the number of
selected connections with the highest gradient value among
the input connections per neuron, the number of learnable
parameters linear ascent.

A.3. Parameters distribution of Ner selection

In contrast to our approach, a simple approach is to select
the parameters for a specific task by selecting a certain per-
centage of parameters with the highest gradient from the en-



Dataset Params. (M) Conne.s ‘ Dataset Params. (M) Conne.s ‘ Dataset Params. (M) Conne.s
CUB-200-2011 0.47 2 Pets 0.23 1 DMLab 0.20 1
NABirds 1.35 10 SVHN 0.20 1 KITTI/distance 0.20 1
Oxford Flowers 0.29 1 Sun397 0.55 1 dSprites/loc 0.21 1
Stanford Dogs 0.30 1 Patch Camelyon 0.30 2 dSprites/ori 0.21 1
Stanford Cars 1.07 10 EuroSAT 0.20 1 SmalINORB/azi 0.21 1
CIFAR-100* 0.29 1 Resisc45 0.24 1 SmalINORB/ele 0.20 1
Caltech101 0.29 1 Retinopathy 0.20 1 CIFAR-100 0.58 5
DTD 0.24 1 Clevr/count 0.30 1 CIFAR-100 (Swin) 0.82 5
Flowers102 0.29 1 Clevr/distance 0.20 1 CIFAR-100 (ConvNeXt) 0.78 5

Table 7. The number of learnable parameters and connections across all tasks. CIFAR-100" is a subset of CIFAR-100 in VTAB benchmark.
In bracket is the model architecture, without bracket represents the one fine-tuned on ViT-B/16. Params. means the learnable parameters
and the Conne. represents the number of selected input connections for each neuron in the network.
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Figure 8. The number of learnable parameters with the different
number of connections on VIT-B/16, Swin and Convnext archite.
The learnable parameters do not contain the task-specific head.

tire network [30]. However, as shown in Figs. 9(a) to 9(e),
most of the selected parameters are located in the upper lay-
ers, specifically block 12 and block 11. As a result, the
network is primarily focused on fine-tuning abstract fea-
tures while lacking the ability to fine-tune detailed infor-
mation from shallower layers. Our approach addresses this
challenge by carefully selecting the input connections for
each individual neuron, resulting in our selected parameters
being evenly distributed on the whole network, as shown
in Fig. 9(f).

B. Additional experiments
B.1. Robustness and OOD datasets

In addition to standard classification tasks, we further ana-
lyze the robustness and OOD generalization ability of GPS.
Based on the Imagenet-A, ImageNet-R, and ImageNet-C
datasets, we first fine-tune the model on ImageNet-1K, and
then test the fine-tuned model on the three datasets respec-
tively. The results are shown in Tab. 8. GPS not only
achieves the best performance on the standard ImageNet-
1K classification task but also achieves good performance

Dataset | ImageNet | ImageNet | ImageNet | ImageNet
Method K@M | A RM <®
Full [43] | 8358 | 3449 | 5129 | 4647
Linear [43] 82.04 33.91 52.87 46.91
Bias [92] 82.74 42.12 55.94 41.90
Adapter [36] 82.72 42221 54.13 42.65
VPT-Shallow [43] | 82.08 30.93 53.72 46.88
VPT-Deep [43] 82.45 39.10 53.54 43.10
SSF [58] 83.10 45.88 56.77 41.47
GPS | 8391 | 4611 | 5700 | 4204

Table 8. Performance comparisons on the ImageNet with different
model architectures.

in robustness and generalization tests. Among them, GPS
achieves the best results on ImageNet-A and ImageNet-R,
outperforms the previous optimal SSF by 0.23%, reflecting
the strong stability and generalization ability of our method.
On ImageNet-C, GPS performs slightly worse, lagging be-
hind SSF, but still higher than addition-based Adapter and
VPT. This result indicates that our method can quickly
adapt to the data distribution of downstream tasks, but it
needs to be improved in anti-interference.

B.2. More experiments on different architecture

As mentioned in the main body of our paper, our method
is model-agnostic, we further compare GPS with other fine-
tuning methods across ViT-B/16, Swin-B, and ConvNeXt-B
architectures on the ImageNet-1k [10] and CIFAR-100 [51]
datasets.

CIFAR-100 As shown in Tab. 10, unlike FGVC and
VTAB, GPS and other efficient tuning methods have dif-
ficulty in achieving competitive performance as full tuning
on CIFAR-100. This may be due to that CIFAR-100 con-
tains more training data, allowing all parameters of the en-
tire model to be adequately trained, which seriously reduces
the advantages of efficient fine-tuning methods. However,
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Figure 9. Distribution of the parameter over the whole network ViT-B/16 on 6 FGVC dataset (CUB-200-2011, Oxford Flowers, Stanford
Dogs, Stanford Cars and NABirds). Selecting the 1% parameters with the highest gradient value from the whole network, instead of our
method selecting at least one of the connections among all input connections per neuron. In contrast to this method, our GPS has the same
distribution over different downstream tasks (f).

W CUB-200 NABrids Oxford  Stanford Stanford | Mean Mean Mean
Method -2011 Flowers Dogs Cars Acc. Params. (M) Params. (%)
ViT-B/16 + Full 87.3 82.7 98.8 89.4 84.5 88.54 85.98 100.00
ViT-B/16 + Linear 85.3 75.9 97.9 86.2 51.3 79.32 0.18 0.21
ViT-B/16 + SSF 89.5 85.7 99.6 89.6 89.2 90.72 0.39 0.45
ViT-B/16 + GPS (Ours) 89.9 86.7 99.7 92.2 90.4 91.78 0.66 0.77
Swin-B + Full 90.7 89.8 99.5 88.9 93.2 92.42 86.98 100.00
Swin-B + Linear 90.6 86.8 99.2 88.3 74.6 87.90 0.24 0.28
Swin-B + SSF 90.5 88.4 99.7 88.7 90.4 91.54 0.49 0.56
Swin-B + GPS (Ours) 90.8 88.9 99.7 92.7 90.7 92.56 0.83 0.95
ConvNeXt-B + Full 91.2 90.4 99.6 89.9 94.1 93.04 87.81 100.00
ConvNeXt-B + Linear 90.6 86.9 99.3 89.7 73.5 88.00 0.24 0.28
ConvNeXt-B + SSF 90.8 89.0 99.7 90.4 92.5 92.48 0.50 0.56
ConvNeXt-B + GPS (Ours) 91.0 89.6 99.7 93.7 92.6 93.32 0.79 0.90

Table 9. Performance comparisons on FGVC benchmark with different model architectures.



Architecture ‘ ViT-B/16 | Swin-B |  ConvNeXt-B
| Acc. Params.(%) | Acc. Params.(%) | Acc. Params.(%)

Full [43] | 93.82  100.00 | 9385 10000 | 94.14  100.00
Linear [43] 88.70 0.09 89.27 0.12 89.20 0.12
Bias [92] 93.39 021 92.19 0.28 92.80 0.27
Adapter [36] | 93.34 036 92.49 0.38 92.86 052
VPT-Shallow [43] | 90.38 1.07 90.02 0.15 - -
VPT-Deep [43] | 93.17 1.43 92.62 0.81 - -
SSF [58] 93.99 033 93.06 0.43 93.45 042

GPS (Ours) | 94.02 0.68 | 93.55 0.96 | 93.58 0.90

Table 10. Performance comparisons on the CIFAR-100 with dif-
ferent model architectures.

. | ViT-B/16 | Swin-B |  ConvNeXt-B
Architecture
‘ Acc.  Params.(%) ‘ Acc.  Params.(%) ‘ Acc.  Params.(%)
Full [43] | 83.58  100.00 | 8520  100.00 | 8580  100.00
Linear [43] 82.04 0.89 83.25 117 84.05 116
Bias [92] 82.74 1.00 83.92 1.32 84.63 1.31
Adapter [36] | 82.72 116 83.82 143 84.49 1.54
VPT-Shallow [43] | 82.08 1.06 83.29 119 - -
VPT-Deep [43] | 8245 1.42 83.44 1.85 - -
SSF [58] 83.10 L12 84.40 1.47 84.85 1.4
GPS (ours) | 83.91 137 | 8443 196 | 84.87 1.90

Table 11. Performance comparisons on the ImageNet-1k with dif-
ferent model architectures.

GPS still outperforms all previous parameter-efficient tun-
ing methods (Bias, Adapter, VPT, and SSF) and reduces
the gap with full fine-tuning to less than 0.5% on all archi-
tectures, which further demonstrates the adaptability of our
approach to different models.

ImageNet-1k Similar to the results on CIFAR-100,
ImageNet-1K contains more training data, which makes
it harder for parameter-efficient fine-tuning algorithms to
achieve the same accuracy as full fine-tuning, as shown
in Tab. 11. However, GPS still outperforms full fine-tuning
by 0.33% on ViT structure, and outperforms the previous
SOTA method SSF on Swin and ConvNeXt structures re-
spectively, which further shows the generalization of GPS
to different model structures.

FGVC As mentioned in the main body of our paper,
our method achieves the best result on FGVC benchmark.
Tab. 9 shows the full results of Tab. 4 in the main body.
Among all three model architectures, GPS consistently
outperforms all other baselines, demonstrating its model-
agnostic advantage.

B.3. Data-efficient tuning

Recent advances in large foundation model fine-tuning have
shown considerable promise in reaching state-of-the-art
performance on various tasks. However, in order to reach
high accuracy, these methods often need significant vol-
umes of training data, which may be time-consuming and
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Figure 10. The performance comparison of different fine-tuning
methods under k values for each class on ImageNet dataset. Our
method is always above the curve of the others. The advantage of
our approach is particularly evident in extreme cases where data is
extremely scarce (e.g., k=1).

costly to obtain. Here we demonstrate that our method
is data efficient, that is, with such a few-shot setting, our
method requires only a small amount of training data for
tuning to achieve outstanding results that other approaches
do not. Specifically, we fine-tune the ViT-B/16 by select-
ing only k samples for each class in the ImageNet dataset
to form a few-shot training set. The value of k and the ac-
curacy of predicted results are illustrated in Fig. 10, which
demonstrates the excellent data efficiency of our method es-
pecially in extreme cases like k=1.

B.4. Random seed for impacts of different selection
schemes and ablations

We conduct experiments with three random seeds to inves-
tigate the robustness of our method. As shown in Tab. 12,
Our parameter selection method significantly outperforms
the other methods with small randomness. Tab. 12 is a sup-
plementary of Tab. 6 in the main body of our paper.

C. Visualizations
C.1. Semantic segmentation

As mentioned in the main body of our paper, our approach
demonstrates highly promising results in the field of seman-
tic segmentation. We apply our method on the pre-trained
strong segmentation model (SAM) [50] and fine-tune on
a medical segmentation task — polyp segmentation [41].
Here, we present more case visualizations, which could di-
rectly show the effectiveness of our method, as shown in
Fig. 11.



CUB NAbirds Flowers Cars Dogs

@) Net 86.86 £0.21 86.55+0.03 99.62+0.01 89.65+0.12 91.32+0.07
Layer 87.30+0.13 86.79+0.08 99.64+0.01 90.03+£0.13 91.90+0.11
Net Random 86.60 £0.10 8598+0.07 99.61+0.01 89.10+0.12 91.34+0.12
(b) | Neuron Random | 87.17 +0.15 86.02+0.10 99.62+0.01 89.52+0.23 91.82+0.23
Magnitude 87.29+£0.12 8599+£0.08 99.62+0.00 89.29+0.02 91.30+0.02

(c) | Head+CE
GPS

87.05+0.19 86.20+0.14 99.64+0.01 89.25+0.09 91.29+0.01
88.07+0.11 86.64+0.03 99.69 +0.01 90.10+0.10 92.30+0.10

Table 12. Impacts of different selection schemes and ablations. (a) Different selection levels. (b) Different selection criteria. (c) Different
ways to calculate gradients.
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Figure 11. The Visualization Result of Polyp Segmentation. Here GT means ground truth. As illustrated in this figure, although SAM
and other methods can identify some polyp structures in the image, the result is not accurate. By using GPS, our approach elevates the
performance with SAM.
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Figure 12. The overlap of the selected parameters across different tasks. Overlap is determined based on parameter position. If selected
parameters share the same position in the network, they are considered to have overlap. We test on the ViT-B/16 with following tasks: (a)
Cifar100 and Caltech101; (b) Eurosat and Resisc45; (c) Clevr/count and Dsprites/loc; (d) Cifar100, Eurosat and Clevr/count.
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Figure 13. t-SNE visualization of different fine-tuning methods, including linear probing, SSF, GPS, full fine-tuning.

C.2. Distribution of selected parameters across var-
ious tasks

As we select different subsets of parameters from the orig-
inal model for different downstream tasks, a normal ques-
tion is how different the distribution of the selected param-
eters is across different tasks. we test on Vit-B/16 with 6
downstream tasks from VTAB (two from Natural, two from
Specialized and the other two from Structured). As shown
in Fig. 12, the chosen parameters exhibit a tendency towards
2/3 shared parameters and 1/3 task-specific parameters, de-
spite the dissimilar data distribution of downstream tasks.
This is due to our selection scheme, which makes the pa-
rameters evenly distribute on the whole network and thus
the parameters from shallow layers tend to share parame-
ters as similar findings from the field of multi-task learn-
ing [46, 69, 80].

C.3. Feature distribution

On the NABirds datasets, we use t-SNE to visualize the fea-
ture distribution of different fine-tuning methods. The re-
sults of all comparison methods are obtained based on the
ViT-B/16 pre-trained on ImageNet-21k. The visualization
results are illustrated in Fig. 13. Feature clustering results
using our GPS are superior to those with linear probing,

SSF, and full fine-tuning.

D. Details of the evaluation datasets

The statistic of all datasets used in this paper is shown
in Tab. 13.

D.1. Image classification

FGVC Fine-Grained Visual Classification (FGVC)
benchmark includes 5 downstream tasks, which are
CUB-200-2011 [84], NABirds [81], Oxford Flowers [67],
Stanford Dogs [47] and Stanford Cars [23]. Each one
contains more than 100 classes and a few thousand images.
We directly use the public splits if one contains, otherwise,
we follow the splits in [43].

VTAB-1k Visual Task Adaptation Benchmark [93] con-
tains 19 visual classification tasks which are grouped into
3 sets: (1) Natural — tasks with natural images captured
by standard cameras; (2) Specialized — tasks with images
captured via specialized equipment, e.g., medical camera or
satellite sensor; (3) Structured — tasks with images synthe-
sized from simulated environments, which require geomet-
ric comprehension like object counting and depth estima-
tion. Each one contains only 1000 training examples while



Dataset Description #Classes  Train Val Test
Fine-Grained Visual Classification (FGVC)
CUB-200-2011 [84] Bird recognition 200 5,394 600 5,794
NABirds [81] Bird recognition 555 21,536 2,393 24,633
Oxford Flowers [67] Flower recognition 102 1,020 1,020 6,149
Stanford Dogs [47] Dog recognition 120 10,800 1,200 8,580
Stanford Cars [23] Car classification 196 7,329 815 8,041
Visual Task Adaptation Benchmark (VTAB-1k) [93]
CIFAR-100 [51] 100 10,000
Caltech101 [16] 102 6,084
DTD [8] 47 1,880
Flowers102 [67] Natural 102 800/1000 200 6,149
Pets [68] 37 3,669
SVHN [66] 10 26,032
Sun397 [89] 397 21,750
Patch Camelyon [83] 2 32,768
EuroSAT [32] . 10 5,400
Resiscd5 [7] Specialized 45 800/1000 200 6.300
Retinopathy [25] 5 42,670
Clevr/count [44] 8 15,000
Clevr/distance [44] 6 15,000
DMLab [2] 6 22,735
KITTI/distance [24] 4 711
dSprites/location [64] Structured 16 80071000 200 95 95g
dSprites/orientation [64] 16 73,728
SmalINORB/azimuth [54] 18 12,150
SmalINORB/elevation [54] 9 12,150
General Image Classification Datasets
CIFAR-100 [51] General images 100 50,000 - 10,000
ImageNet-1K [10] & 1,000 1,281,167 50,000 150,000
Robustness and Out-of-Distribution Datasets
ImageNet-A [35] 200 - - 7,500
ImageNet-R [34] Robustness & OOD 200 - - 30,000
ImageNet-C [33] 1,000 - - 75%50,000
Cross-domain Semantic Segmentation Dataset
Kvasir-SEG [41] Polyp Segmentation 2 880 - 120

Table 13. Detailed statistics of the datasets evaluated on our work. We follow the VPT [43] for train/val split. This table is partially

borrowed from VPT[43] and SSF [58].

a large number of test images (i.e. over 20,000 on average).

CIFAR-100 CIFAR-100 [51] is a widely used general
image classification task. It contains 50,000 training and
10,000 test images with 100 categories.

ImageNet-1K ImageNet-1K [10] is the most commonly
utilized subset of ImageNet for object classification, en-
compassing 1000 classes and featuring a training set of
1,281,167 images, a validation set of 50,000 images, and
a test set of 100,000 images.



D.2. Semantic segmentation

Polyp segmentation We select kvasir-SEG [42] for polyp
segmentation task. We follow the settings in Medico auto-
matic polyp segmentation- task at mediaeval 2020 [41] with
a train-valid ratio of 880:120.

D.3. Robustness and OOD

ImageNet-A ImageNet-A [35] contains 200 classes,
which is selected from ImageNet-1K (1000 classes). All
samples are real-world adversarial samples that caused the
ResNet model to produce erroneous classifications.

ImageNet-R ImageNet-R [34] contains art, graffiti,
sculptures, tattoos, toys, cartoons, paintings, embroidery,
deviantart, graphics, patterns, plastic objects, origami, plush
objects, sketches, and video game renditions from Ima-
geNet classes.

ImageNet-C ImageNet-C [33] is an open-source collec-
tion of algorithmically generated corruptions, such as blur
and noise, that have been applied to the ImageNet test set.

E. Extended related work
E.1. Visual parameter efficient fine-tuning

In the field of computer vision, current work endeavors to
pre-train larger models [11, 14, 61,73, 99, 100] on extensive
datasets, followed by fine-tuning diverse downstream tasks
to achieve superior performance and faster convergence.
Conventional arts set all the network parameters learnable
and adapt them to the target tasks. However, as founda-
tion models become increasingly large and the number of
downstream tasks increases, it becomes impractical due to
the significant computational and storage requirements that
it entails. Parameter-efficient fine-tuning (PEFT) methods
are proposed to alleviate such a burden, which tunes only
a tiny portion of the parameters. The general PEFT can be
categorized into addition-based and selection-based meth-
ods.

Addition-based methods introduce additional parame-
ters to the pre-trained backbone. Adapter methods keep
most of the parameters in the model frozen and update
only small-scale injected parameters. Bottleneck-structured
adapters [1, 36, 69, 70, 75, 76, 78, 80, 86, 94] adopt a
residual pathway to leverage both original and task-specific
knowledge by learning down-projection and up-projection
with a nonlinear activation. Others [63] propose a hyper-
network to generate model weights or decompose the dense
weighted matrix into the low-rank matrix to reduce param-
eters [46]. Instead of introducing extra modules, prompt
methods [12, 22, 39, 45, 57, 59, 60] wrap the input with

context. A representative work VPT [43] prepend learn-
able prompts to the input tokens before feeding it into
each Transformer block. VPT includes two variants VPT-
Shallow and VPT-Deep associated with the number of in-
serted layers. VPT-Shallow simply prepends prompts to the
first transformer layer while VPT-Deep prepends prompts
to all the layers. However, it’s inflexible when applying the
method to new tasks since it relies on hand-crafted prompt
length selection. Apart from the adapter and prompt tuning,
a recent study SSF [58] introduces two learnable vectors to
scale and shift the feature map in each transformer opera-
tion and achieves promising results. These extra parameters
will lead to a substantial increase in computational overhead
and hinder the rate of convergence. Our method solves these
issues without adding parameters or changing the network
topology so it can effectively alleviate such problems.

Selection-based methods [26, 92, 98] do not introduce
any new parameters but directly select part of the parame-
ters to be optimized without modifying the intrinsic archi-
tecture of the model. Bitfit [92] only fine-tunes bias vectors
in the pre-trained model. Other methods only fine-tune the
top-K layers [36] or the last linear layer [43] with other lay-
ers freeze. Despite efficiency, they suffer a significant ac-
curacy drop compared to the full fine-tuning since the man-
ually specified parameters tend to be a non-optimal solu-
tion. Our gradient-based parameter selection method falls
into this category. Since the gradient can serve as a tool for
determining parameter significance, our method is intuitive
but surprisingly effective.

E.2. Subset network training

Standard pruning technique [19, 28, 29, 52, 56, 88] nat-
urally uncovers subnetworks whose initializations made
them capable of training effectively. The lottery ticket hy-
pothesis [17] articulate that subnetworks can reach test ac-
curacy comparable to the original network. Drawing from
the theory, fine-tuning methods based on subset network
are widely studied. SpotTune [27] designs a policy net-
work to make routing decisions for subset networks. Child-
tuning [90] iteratively updates a subset of parameters by
masking out the gradients of the non-child network dur-
ing the backward process. However, the computing over-
head led by hyper networks or iterative parameter selection
makes none of these methods parameter-efficient. We fix
the position of parameters that will be updated by simple
gradient weights sorting before training which makes our
method parameter efficient.

F. Disscussion

Why sub-network? There is a lot of research in the
field of neural network pruning, where researchers aim to
identify the importance of the parameters in a network
and eliminate some unnecessary parameters without perfor-



mance deterioration (about 90% parameters of the model
are pruned) [5, 9, 55, 71]. Motivated by this, we posit the
existence of a sub-network containing crucial parameters
that can be fine-tuned for optimal performance on down-
stream tasks.

Magnitude or gradient? In contrast to the approaches
of identifying the importance of the parameters in [5, 9,
55, 71], which rely on weight magnitude to determine pa-
rameter importance, our method identifies parameter impor-
tance based on gradient values. An important difference
between gradient and magnitude is that the gradient-based
method is task-specific, as the gradient is calculated by the
backpropagation of the loss for a specific task, while the
magnitude-based method use a set of same parameters for
all downstream tasks. However, our ablation study in the
main body has shown gradient-based method perform bwt-
ter and the Fig. 12 also show that each task has it own task-
specific parameters.

G. Limitations and societal impacts

Limitations Several studies [46, 69, 80] have demon-
strated that certain similar tasks can be optimized together
through parameter sharing, resulting in improved perfor-
mance across all individual tasks. However, our work fo-
cuses on selecting distinct parameters for various tasks. Al-
though we already tune affordable parameters, we do not
fully exploit the potential of parameter sharing across differ-
ent tasks. Therefore, we posit that our work can be extended
to a multitask setting, where tasks share tuning parameters
and thus further reduce the total number of learnable param-
eters.

Societal impacts Our method can effectively fine-tune
pre-trained models for downstream tasks by adjusting less
than 1% of the network’s parameters. This is particularly
beneficial when dealing with large pre-trained models and
multiple downstream tasks, as it saves computational re-
sources, memory costs, and reduces carbon emissions. Our
approach maintains the model’s original structure without
introducing any additional parameters during both the train-
ing and inference stages, distinguishing it from other meth-
ods. However, similar to other fine-tuning approaches, our
method relies on a pre-trained model. If this upstream pre-
trained model is trained on illicit data, it may also violate
the use of fine-tuning methods.



