
Appendix

A. Data Collection and User Study

In the evaluation steps, we collect real-world images with instructions using Amazon Mechanical Turk (Mturk) 4. We
randomly collect 200 real-world images. Then we ask Mturk annotators to write five instructions for each image, and
encourage them to have wild imaginations and diversify the instruction types. We encourage annotators to not be limited
to making the image realistic. For example, annotators can write “add a horse in the sky”. A screenshot of the interface is
illustrated in Fig. 13. We analyze the top five verbs and nouns in the evaluation dataset. It is shown in Fig. 15(a) that the verbs
“add”, “change”, “make”, “remove” and “put” make up around 85% of all verbs, which means that the editing instruction
verbs have a long-tail distribution. In contrast, the distribution of nouns in Fig. 15(b) is close to uniform, where the top five
nouns represent only around 20% of all nouns.

In user studies, we use Mturk to ask annotators to evaluate edited images. A screenshot of the interface is shown in Fig. 14.
The annotators are provided with the original image, two edited images, and the editing instruction. They are asked to select
the better edited image. The third option indicates that the edited images are equally good or equally bad. We ask three
annotators to label one data sample, and use the majority votes to determine the results. We shuffle the edited images to avoid
choosing the left image over the right and vice versa.

B. Implementation Details

B.1. Instructional Supervised Training

We use pre-trained stable diffusion models as the initial checkpoint to start instructional supervised training. We train HIVE
on 40GB NVIDIA A100 GPUs for 500 epochs. We use the learning rate of 10�4 and the image size of 256. In the inference,
we use 512 as the default image resolution.

Figure 13. Mturk writing editing instructions interface: write five instructions per image.

Figure 14. Mturk labeling interface: select the better edited image.

Top five verbs Top five nouns

Figure 15. Top five verbs and nouns in the evaluation dataset.

B.2. Human Feedback Rewards Learning
As shown in Fig. 3, the reward model takes in an input image cI , a text instruction cE , and an edited image x̃ and outputs a
scalar value. Inspired by the recent work on the vision-language model, especially BLIP [28], we employ a visual transformer
[13] as our image encoder and an image-grounded text encoder as the multimodal encoder for images and text. Finally, we
set a linear layer on top of the image-grounded text encoder to map the multimodal embedding to a scalar value.

(1) Visual transformer. We encode both the input image cI and edited image x̃ with the same visual transformer. Then
we obtain the joint image embedding by concatenating the two image embeddings vit(cI), vit(x̃).

4https://www.mturk.com

Train a reward model on the reward dataset

Let annotators rank outputs from best to worst

Collect a reward dataset and generate sampled
outputs from step 1

Step 1: instructional supervised
training

Step 2: collect comparison data, and train a
reward model

(a) (b)

(c) (d)

Step 3: fine-tune diffusion model with
learned rewards

Collect data to fine-tune GPT-3 and use
fine-tuned GPT-3 to generate text edits

Fine-tuned GPT-3 inference input
Caption: penguins are playing

Fine-tuned GPT-3 inference output
Instruction: Change to summer
Edited caption: penguins are playing in the
summer

(b)>(d)>(a)>(c)

Replace the oasis
with a swimming

pool.

Use Prompt-to-Prompt to generate
paired images

Caption

Edited
caption

Fine-tune stable diffusion with the
paired images and instructions

Change to summer

(b) (d) (a) (c)

BLIP based RM

Use the learned reward model to calculate
reward values for each training pair

Use weighted reward loss to fine-tune the
diffusion model

Position the helicopter
above the sea.

1.3

Incorporate the Tokyo
Tower. 0.5

(1.3, 0.5, …)

rewards
values

exponential rewards
as weights

Position the helicopter above
the sea.

fine-tune Stable
diffusion
model

> > >

Figure 16. Overall architecture of HIVE. Different from Fig. 2, in the third step, we use weighted reward loss instead of condition reward
loss to fine-tune the diffusion model.

(2) Image-grounded text encoder. The image-grounded text encoder is a multimodal encoder that inserts one additional
cross-attention layer between the self-attention layer and the feed-forward network for each transformer block of BERT
[11]. The additional cross-attention layer incorporates visual information into the text model. The output embedding of the
image-grounded text encoder is used as the multimodal representation of the (cI , cE , x̃) triplet.

We gather a dataset comprising 3,634 images for the purpose of ranking. For each image, we generate five variant edited
images, and ask an annotator to rank images from best to worst. Additionally, we ask annotators to indicate if any of the
following scenarios apply: (1) all edited images are edited but none of them follow the instruction; (2) all edited images are
visually the same as the original image; (3) all images are edited beyond the scope of instruction; (4) edited images have
harmful content containing sex, violence, porn, etc; and (5) all edited images look similar to each other. We compare training
reward models by filtering some/all of these options.

We note that a considerable portion of the collected data falls under at least one of the aforementioned categories, indicating
that even for humans, ranking these images is challenging. As a result, we only use the data that did not include any non-
rankable options in the reward model training. From a pool of 1,412 images, we select 1,285 for the training set, while the
remaining images were used for the validation set. The reward model is trained on a dataset of comparisons between multiple
model outputs on the same input. Each comparison sample contains an input image, an instruction, five edited versions of
the image, and the corresponding rankings. We divide the dataset into training and validation sets based on the distribution
of the corresponding instructions.

We apply the method in Sec. 3.3 on the reward data to develop a reward model. We initialize the reward model from the
pre-trained BLIP, which was trained on paired images and captions using three objectives: image-text contrastive learning,
image-text matching, and masked language modeling. Although there is a domain gap between BLIP’s pre-training data
and our reward data, where the captions in BLIP’s data describe a single image, and the instructions in our data refer to the
difference between image pairs. We hypothesized that leveraging the learned alignment between text and image in BLIP
could enhance the reward model’s ability to comprehend the relationship between the instruction and the image pairs.

The reward model is trained using 4 A100 GPUs for 10 epochs, employing a learning rate of 10�4 and weight decay of
0.05. The image encoder’s and multimodal encoder’s last layer outputs are utilized as image and multimodal representations,
respectively. The encoders’ final layer is the only fine-tuned component.

We use the trained reward model to generate a reward score on our training data. We perform two experiments. The
first experiment takes the exponential rewards as weights and fine-tunes the diffusion model with weighted reward loss as
described in Sec. 3.4. See Fig. 16 for the visualization of the method. The second experiment transforms the rewards to
text prompts and fine-tunes the diffusion model with the condition reward loss as described in Sec. 3.4. The method is
introduced in Fig. 2. We compare those two experiment settings, and results can be found in Sec. D.3.

C. Reward Maximization for Diffusion-Based Generative Models
C.1. Discussion on On-Policy based Reward Maximization for Diffusion Models
Directly adapting on-policy RL methods to the current training pipeline might be computationally expensive, but we do
not conclude that sampling-based approaches are not doable for diffusion models. We consider developing more scalable
sampling-based methods as future work.

We start the sampling methods derivation with the following objective:

J(✓) := max
⇡✓

Ec⇠pc

h
Ex̃xx⇠⇡✓(·|c) [R�(x̃xx, c)]� ⌘KL[pD(x̃xx|c)||⇡✓(x̃xx|c)]

i
, (3)

where pc(c)pD(x̃xx|c) is the joint distribution of the condition and edited images pair, and ⇡✓ denotes the policy or the diffusion
model we want to optimize. Note that pD(x̃xx|c) and ⇡(x̃xx|c) are swaped compared with the objective in Eq. (1). The second
term in Eq. (3), is the KL Minimization formula for maximum likelihood estimation, equivalent to the loss of diffusion
models. We represent the policy ⇡✓ via the reverse process of a conditional diffusion model:

⇡✓(x̃xx|c) := p✓(x̃xx
0:T | c) = p0(x̃xx

T)
TY

t=1

p✓(x̃xx
t�1|x̃xxt; c) ,

where p0(x̃xx
T) := N (x̃xxT ,0; I), and p✓(x̃xx

t�1|x̃xxt; c) := N (x̃xxt|µ✓(x̃xxt, t),�2
t)I is a Gaussian distribution, whose parameters are

defined by score function ✏✓ and stepsize of noise scalings. So we can get a edited image sample x̃xx0 by running a reverse

diffusion chain:

x̃xxt�1|x̃xxt =
1

p
↵t

✓
x̃xxt � 1� ↵tp

1� ↵̄t
✏✓(x̃xx

t, c, t)

◆
+ �tzzzt, zzz ⇠ N (0, I), for t = T, . . . , 1 ,

and x̃xxT ⇠ N (0, I).
As a result, the reverse diffusion process can be viewed as a black box function defined by ✏✓ and noises ✏✏✏ :=

(zzzT , . . . , zzz1, x̃xx
T), which we can view as a shared parameter network with noises. And for each layer, we can view the

parameter is the score function ✏✓. Define the network as

x̃xx0 := f(c, ✏✏✏; ✓) , ✏✏✏ ⇠ pnoise(·), c ⇠ pc(·) ,

where we can rewrite the first term as

Ec⇠D,✏✏✏⇠pnoise(·)[R�(f(c, ✏✏✏; ✓), c)] ,

and we can optimize the parameter ✓ with path gradient if R· is differentiable with path gradient. Similarly, suppose we
want to optimize the first term via PPO. In that case, the main technical difficulty is to estimate r✓ log ⇡✓(x̃xx|c), which can be
estimated with the following derivation:

r✓ log ⇡✓(x̃xx|c) = r✓ log p✓(x̃xx
0:T | c) =

TX

t=1

r✓ log p✓(x̃xx
t�1|x̃xxt; c) .

Note that for both the end-to-end path gradient method and PPO we require to sample the reverse chain from x̃xxT to x̃xx0, thus
we can estimate r✓ log ⇡(x̃xx|c) using the empirical samples x̃xx0:T .

For the above two methods, to perform one step policy gradient update, we need to run the whole reverse chain to get
an edited image sample x̃xx0 to estimate the parameter gradient for the first term. As a result, the computational cost is the
number of diffusion steps more extensive than the supervised fine-tuning cost. Now we need more than two days to fine-tune
the stable diffusion model, so for standard LDM, where the number of steps is 1000, we can not finish the training within
an acceptable training time. Even if we can use some fast sampling methods such as DDIM or variance preserve (VP) based
noise scaling, the diffusion steps are still more than 5 or 10. Further, we haven’t seen any previous work using such noise
scaling to fine-tune stable diffusion. As a result, we think naive sampling methods might have high risk to obtain similar
performance, compared with our current offline RL based approaches.

C.2. Derivation for Eq. (2)

Take a functional view of Eq. (2), and differentiate J(⇢) w.r.t ⇢, we get

@J(⇢)

@⇢
= R�(x̃xx|c)� ⌘ (log ⇢(x̃xx|c) + 1� log p(x̃xx|c)) .

Setting @J(⇢)
@⇢ = 0 gives us

log ⇢(x̃xx|c) = 1

⌘
R�(x̃xx|c) + log p(x̃xx|c)� 1 ,

⇢(x̃xx|c) / p(x̃xx|c) exp (R�(x̃xx, c)/⌘) .

Thus we can get the optimal ⇢⇤(x̃xx|c).

D. Additional Ablation Study
D.1. SD v1.5 and v2.1.
In Sec. 4.2, we upgrade the backbone of stable diffusion from v1.5 to v2.1, where OpenCLIP text encoder [49] replaces
the CLIP text encoder [42]. In this section, we demonstrate the quantitative consistency plot in Fig. 17(a) on the synthetic
evaluation dataset, which shows similar conclusions to the user study in Fig. 11(a). We compare IP2P-Ours v1.5 with v2.1
as well. An interesting observation is that we train IP2P-Ours with SD v2.1 and show in Fig. 17(b) that its improvement over
SD v1.5 is larger than HIVE in Fig. 17(a).

IP2P-Ours with SD v1.5 and v2.1 InstructPix2Pix with SD v1.5 and v2.1

Figure 17. HIVE and IP2P-Ours with SD v1.5 and v2.1.

Figure 18. SD v1.5 trained vs. SD v2.1 trained reward model

Figure 19. HIVE with weighted reward loss and conditional reward loss.

D.2. Model Adaptation
We demonstrate that HIVE is able to adapt the reward model that is trained on a different backbone from the backbone in
Step. 3. We use the SD v1.5 generated data to train the reward model, and process the rest steps using SD v2.1. We report
user study results in Fig. 18. It is observed that the users vote similarly between the reward models that are trained on two
SD backbones. In other words, the reward model is able to adapt from one backbone to another.

D.3. Weighted Reward and Conditional Reward Losses
We compare the weighted reward loss and conditional reward loss on the synthetic evaluation dataset. As shown in Fig. 19,
the performances of these two losses are close to each other, while the conditional reward loss is slightly better. Therefore
we adopt the conditional reward loss in all our experiments.

D.4. Training with Less Data
We analyze the effect of the training data size. We compare HIVE with SD v1.5 at four training dataset size ratios: 100%,
50%, 30% and 10%. As shown in Fig. 20, significantly decreasing the size of the dataset, e.g. 10% data, leads to worse

Figure 20. HIVE with different training data size.

Change global style Adjust attributes Add/remove Manipulate objects Others
Figure 21. Subcategory analysis between IP2P and HIVE.

ability to perform large image edits. On the other hand, reasonable decreasing dataset size can result in a similar yet slightly
worse performance e.g. 50% data.

D.5. Subcategory Analysis
We classify the editing into the following sub-categories: changing the global style, adjust attributes for the main object,
add/remove objects, manipulate objects, and other challenging cases such as zooming and camera view changes. We use
ChatGPT 5 to determine which sub-category the instruction belongs to. Specifically, the numbers of instructions in each sub-
category are as follows: changing global style (133), adjust attributes for the main object (134), add/remove objects (508),
manipulate objects (219), and others (6). We analyze user study results for each sub-category. It is shown in Fig. 21 that the
most improvement comes from the sub-categories ”Add/remove objects” and ”Manipulate objects”.

D.6. Additional Visualized Results
We illustrate additional visualized results in Fig. 22, 23, 24, 25, 26, where each row illustrates three instructional editing
examples.

5https://chat.openai.com/

Input Place a number of
bisons in the picture

Transform the lake into a
volcanic appearance

Give the lake a wintry
appearance

Input Remove indoor plants Add a fridge Change the wall color to blue

Input Add birdsChange the leaf color to redRemove buildings

Input Add a busRemove the buildingChange the season to
summer

Input Change the building to
the white house

Add a boat in the riverReplace the river with
lawn

Input Change the moon to a
sun

Change the desert to seaRemove the moon

Figure 22. Additional editing results.

Input Change the cloth color
to blue

Make it Japanese style Add sunglasses

Input Change all cars to
blue

Change the season to
fall

Remove snow in the
mountain

Input Make it rainyChange the color of trees to
green

Replace the car with a
deer

Input Remove rocksChange the bridge to stoneMake it winter

Input Add a helicopterChange the birds into dronesChange the mountains
into buildings

Input Change the painting to
the starry night

Add a catRemove the moon

Figure 23. Additional editing results.

Input Change the light
house to Eiffel Tower

Add whales jumping out of
the water

Change pine trees to palm
trees

Input Make it springtime Add a horse Change the road to a river

Input Make the train into
cartoon style

Make the weather rainyChange the color of
train to purple

Input Change tree color to
green

Make a sunny dayMake red rooftops a
deeper red

Input Make the background
as a city

Add a moonAdd a sun

Input Add dinosaurs in the
foreground

Turn the mountain into a
volcano

Add a moon

Figure 24. Additional editing results.

Input Add boats on the
water

Remove the waterfalls Add birds flying

Input Remove the building Add a pond Change the roof color to
green

Input Make the sun have a
smiley face

Change the bird into dogChange day into night

Input Remove the steamMake the landscape a desertChange the color of
train to red

Input Change the tractor to
a boat

Turn tractor color to purpleChange tractor driver
to a woman

Input Make the bus rainbow
colored

Add a UFO in the skyPut a dragon on the
tower

Figure 25. Additional editing results.

Input Remove the buildings
on the mountain

Add flying dragons Add a T-Rex

Input Change the oranges
into tennis balls

Make the orange be
on fire

Change the orange to apple

Input Remove all astronautsChange the color of the
astronauts to yellow

Add rockets

Input Add a couple of dolphin
in a row to the waterMake the landscape a desertMake the ladder have

two more rungs

Input Make it as if it’s going
to rain

Add birds to the skyRemove the red bus

Input Add more camelsMove pyramids in the seaMake it noon

Figure 26. Additional editing results.

