
HOI-M3: Capture Multiple Humans and Objects Interaction within Contextual
Environment

Supplementary Material

Due to space limitations, we have to remove some details
that are not included in the main paper in the appendix.

1. More Details of HOI-M3 Dataset
In this section, we provide more details about HOI-M3

dataset, including statistic analyses, data preprocess and
hardware setup.

1.1. Dataset Statistic

HOI-M3 provides a large volume of long human object in-
teractions(HOI) (more than 10k frames HOI per sequences),
which will be beneficial for long-term motion and HOI gen-
eration. To assess the dataset’s diversity, we provide key
statistics, including gender, height, weight, and object scale,
illustrated in Figure 1. The results demonstrate the dataset’s
diversity in human body shapes and object scales.

1.2. Data Preprocess

For accurate object tracking, separating the target object
from the background in a video sequence serves as a crucial
cue for optimization. However, tracking an arbitrary object
in diverse scenes is a non-trivial task. Following previous
work, Track-Anything [16], we employ the Segment Any-
thing Model (SAM)[7] to annotate the initial frame of each
camera view. Subsequently, we utilize XMem[1] for video
object tracking (VOS) on the subsequent frames.

1.3. Hardware Setup

Accurately capturing the motions of multiple humans and
objects remains a challenging task, particularly in the pres-
ence of severe occlusions, a common occurrence in daily
interactions within contextual environments. To address this
challenge and capture realistic interaction sequences, we
designed a custom room-like dome with a square-shaped
multi-layer framework to house the RGB sensors. The sys-
tem stands at a height of 2.9 m and has a side length of 7.8 m
for its octagonal cross-section, as illustrated in Figure 3. To
better align our capture setup with everyday scenarios, we
opted for white backdrops instead of green ones to conceal
the cable. We also provide more quality results sampled
from HOI-M3 dataset as shown in Figure 5.

2. How HOI-M3 Contributes to the Commu-
nity?

The HOI-M3 dataset comprises various scenes depicting
human-object interactions, accompanied by per-frame multi-

ple human and object tracking. We believe our dataset ad-
dresses a significant gap in the literature on multiple human-
object interactions. At the meanwhile, we anticipate that the
dataset will serve as a valuable resource for various research
directions. We propose the following challenges based on
the HOI-M3 dataset:
Multiple Person Pose and Shape Estimation. HOI-M3

offers parametric model labels encompassing shape infor-
mation and 3D skeletal positions. This provides a robust
benchmark for multi-person scenarios, particularly in daily
situations where individuals are frequently occluded by sur-
rounding objects. We believe that HOI-M3 serves as a re-
flective measure of each method’s performance in such chal-
lenging scenarios.
Multiple HOI Capture. In recent years, significant advance-
ments have been made in data-driven human motion capture,
even for single HOI capture. However, there has been limited
progress in monocular multiple HOI capture. The HOI-M3

dataset addresses this gap by providing the largest and most
accurate capturing labels paired with natural RGB images,
enabling robust HOI supervision. Consequently, our dataset
is well-suited for data-driven approaches in both monocu-
lar and multi-view settings, leveraging the precision of our
ground truth annotations.
Multiple Human Motion Generation. We have witnessed
remarkable advancements in diffusion techniques for gener-
ating lifelike human motions, progressing from single human
motion [2, 6, 15, 18–20] to the recent exploration of two-
human interactions [12]. Leveraging the extensive dataset of
long-duration multi-human motions in HOI-M3, we can of-
fer accurate labels for multi-human interactions to facilitate
this evolving task.
Multiple Interaction Generation. HOI-M3 provides an
extensive collection of diverse interaction sequences with
synchronized ground truth capture. Motivated by the recent
significant progress in Motion Generation (MoGen) tasks,
we have demonstrated how our dataset contributes to this
field in the main paper, particularly in the context of a novel
task: Multiple Interaction Generation.

3. More Details of Monocular Multiple HOI
Capture

3.1. Network Architecture

For a fair comparison, we do not choose large size of back-
bone; instead, we employ ResNet-34 [4], pre-trained on the
ImageNet dataset [3], as the default backbone. All input
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Figure 1. Statistics of HOI-M3 humans and objects.

images were padded to the standardized size of 512× 512.
Each prediction head attached to the backbone comprises
a 3× 3× 256 convolutional layer, BatchNorm, ReLU, and
another 1× 1× c0 convolutional layer, where c0 represents
the output size.

3.2. Loss Function

To supervise the network, we have developed individual loss
functions for different maps. The network is supervised by
the weighted sum of the body pose loss Ltheta, the body shape
loss Lbeta, the object pose loss Lobject, the 3D keypoints loss
L3D, the 2D keypoints loss L2D, the center keypoint heatmap
Lhm, and the depth loss of humans and objects Ldepth.
Human Object Center Loss. We employ a heatmap repre-
senting the 2D human body center and object center in the
image, which is represented as a Gaussian distribution in the
human-object position. The center keypoint heatmap Lhm is
derived as follows:

Lhm = ∥Cpred
m − Cgt

m∥2, (1)

where Cpred
m ∈ R128×128 is the predicted center heatmap,

and Cgt
m ∈ R128×128 is the ground truth of Cpred

m .
Human Parameter Loss. Through the parameter sampling
process, we enforce the human parameter loss Ltheta and Lbeta
to match each ground truth body with a predicted parameter
result for supervision. The body pose loss Ltheta and the body
shape loss Lbeta are derived as follows:

Ltheta = ∥θpred − θgt∥1,
Lbeta = ∥βpred − βgt∥1,

(2)

where θgt ∈ R24×3 and βgt ∈ R10 denote the ground truth
of the model’s parameters. θpred ∈ R24×3 and βpred ∈ R10

denote the predicted parameter results sampled from each
center position of the human. Here we use the ℓ1 norm,
following previous work [14, 17].
Object Pose Loss. Similar to Human Parameter, we sample
the object’s 6D pose from each object center with a predicted

parameter result for supervision. The object pose loss Lobject
is derived as follows:

Lobject = ∥Rpred −Rgt∥1, (3)

where Rpred ∈ R3×2 denotes predicted object rotation, and
Rgt ∈ R3×2 denotes the ground truth of the rotation.
Depth Loss. Besides the local representation of humans and
objects, another key component is depth. Here we impose
each subject’s depth as follows:

Lobject = ∥Zpred
center − Zgt

center∥1, (4)

where Zpred
center ∈ R denotes the predicted depth of humans

or objects, and Zgt
center ∈ R denotes the ground truth of the

depth.
Additional Loss. In addition to imposing supervision on
each regression target, we also utilize some intermediate
supervised signals for training, such as 2D keypoints and 3D
keypoints of humans:

L2D = ∥P pred
2D − P pred

2D ∥1,

L3D = ∥P pred
3D − P pred

3D ∥1,
(5)

where P pred
2D ∈ R24×2 and P pred

3D ∈ R24×3 denote predicted
2D and 3D keypoints, and P gt

2D ∈ R24×2 and P gt
3D ∈ R24×3

denote the ground truth of 2D and 3D keypoints.

4. More Details of Multiple Interaction Genera-
tion

Our diffusion models encompass both a forward diffusion
process and a reverse diffusion process. The forward diffu-
sion process progressively introduces Gaussian noise to the
original data x0. In this case, we employed a transformer
model architecture as our denoising network, comprising
four self-attention blocks. Each self-attention block consists
of a multi-head attention layer followed by a position-wise
feed-forward layer. Illustrated in Figure 2, our denoising net-
work incorporates several feature embeddings. Specifically,
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Figure 2. Model architecture of denoising network.

it includes embeddings from object meshes and condition
signals of noise levels n, human numbers, and object num-
bers, which are then concatenated together as input to our
transformer model.

5. Experiment
5.1. Ablation Study

To comprehensively evaluate the components of inertial-
aided multi-object tracking, we perform an additional qual-
itative analysis of various constraint terms. It is important
to note that we lack ground truth specific to tracking, so our
evaluations are qualitative in nature. In figure 6, we present
the quality results obtained by ablating different components.
Specifically, ”w/o collision,” ”w/o IMU Init,” and ”w/o off-
screen loss” denote the results obtained without using the
collision constraint term, without employing the IMU as ini-
tialization, and without utilizing the offscreen term Eoffscreen,
respectively. The results demonstrate that the offscreen term
Eoffscreen effectively prevents degenerate results. Further-
more, without IMU initialization, recovering the object’s
rotation from the human-object mask becomes challenging,
and our collision loss ensures realistic interactions between
humans and objects.

5.2. More Benchmarks

Monocular 3D Human Pose and Shape Estimation In
addition to the two benchmarks for novel data-driven tasks
and their corresponding strong baselines presented in the
main paper, we also introduce additional benchmarks for
a prevalent vision task: monocular 3D human pose and
shape estimation. To ensure a fair comparison with existing
works, we conduct several experiments on our datasets. For
evaluation metrics, we utilize mean per joint position error
(MPJPE), procrustes aligned mean per joint position error
(PA-MPJPE), the percentage of correct keypoints (3DPCK),
and area under curve (3D-AUC) to assess the performance

of 3D pose due to their common usage. Additionally, we
employ per vertex error (PVE) to evaluate body mesh estima-
tion ability. Furthermore, we report the percentage of correct
keypoints after procrustes alignment (PA-3DPCK) and area
under curve after procrustes alignment (PA-3DAUC) on our
dataset. We believe that our dataset currently stands as the
most comprehensive benchmark in terms of evaluation met-
rics. The main results are presented in Table 1, indicating
that conducting tests in scenarios involving multiple per-
sons within multiple object occlusions poses a significant
challenge compared to results obtained from other datasets.
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Figure 5. More quality results.
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Figure 6. Data examples were captured by our system.
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