
HiKER-SGG: Hierarchical Knowledge Enhanced Robust Scene Graph Generation

Supplementary Material

In this supplementary document, we provide additional
details and experimental results to enhance understanding
and insights into our proposed HiKER-SGG. This supple-
mentary document is organized as follows:

• The hierarchical clustering process and visualization re-
sults in Section 3.2 are shown in Section A.1.

• A more detailed description for both the scene graph and
the hierarchical knowledge graph in Section 3.3-3.5 is
shown in Section A.2.

• More discussions about the adaptive refinement in Sec-
tion 3.7 is in Section A.3.

• We provide a more comprehensive description of the
experimental settings used in our study in Section B.1.

• A detailed description and visualization of the VG-C
dataset are provided in Section B.2.

• We also present more experimental results in Section B.3
and B.4.

• Finally, we discuss the potential limitations of the pro-
posed HiKER-SGG in Section C.

A. More Details about HiKER-SGG
A.1. Hierarchical Clustering

As we introduced in Section 3.2, we use a hierarchical clus-
tering algorithm to discover both the entity and predicate
hierarchies. We provide the pseudocode in Algorithm 1.
Specifically, hierarchical clustering initializes with individ-
ual class names as separate clusters and repeatedly merges
the two clusters with the highest similarity until only one
cluster remains. During each iteration, it updates the similar-
ity measures of the newly formed cluster with the remaining
clusters, ensuring that the most similar clusters are merged
at each step. This process results in a hierarchical structure
of clusters based on the defined similarity metric.

After completing the hierarchical clustering, we select
the three lowest-level clusters to conduct our hierarchical
inference process defined in Section 3.6. The discovered
predicate and entity hierarchies are visualized in Figure A1.
Notably, the discovered hierarchical structure reasonably
clusters similar classes in the same superclass, for example,
(1) wearing and wears in predicate classes, and (2) boy,
girl, child, and kid in entity classes. Although most
hierarchical relationships are accurately identified, some
may appear noisy from a human perspective. Nevertheless,
given that our clustering is based on pre-defined similarity
metrics, we do not perform additional cleaning and believe
our model is equipped to handle these issues.

In Section 4.3, we have shown that replacing manually
configured hierarchical structures with those discovered ones
yields a non-trivial 0.4%∼0.7% increase in mR@k metrics.
These results demonstrate that the hierarchies uncovered
by this method, provide more effective guidance for our
hierarchical inference approach.

Figure A1. The visualization of the discovered hierarchies on
the Visual Genome [38] dataset. Top: the discovered hierarchy
for 50 predicate classes; Bottom: the discovered hierarchy for 150
entity classes. In this work, we simply utilize 3-level hierarchies
for the hierarchical inference process.

Algorithm 1: Hierarchical Clustering Algorithm
Input: Category set C = {Ci}ni=1; Similarity metric

Sim(·, ·) defined in Section 3.2.
Output: The hierarchy of clusters L.

1 Initialize the clusters L with n clusters, each
containing a class name;

2 repeat
3 Find pairs of clusters C1 and C2 in L with highest

similarity Sim(C1, C2);
4 Merge C1 and C2 into a new cluster C12;
5 Remove C1 and C2 from L;
6 for each cluster C̃ ∈ L do
7 Update the similarity of the created cluster

with other clusters with Sim(C12, C̃);
8 end
9 Add this new cluster C12 to L;

10 until |L| = 1;

Figure A2. The architecture and notations of our scene graph
and hierarchical knowledge graph. Nodes and edges within the
scene graph are orange, those within the knowledge graph are blue,
and the bridge edges that connect the two graphs are green.

A.2. Scene Graph and Hierarchical Knowledge
Graph

In Figure A2, we summarize the architecture and notations
of our scene graph and hierarchical knowledge graph we
construct in this work. Specifically, we have 6 different
types of nodes, as well as 3 types of edges. Below, we detail
each one individually.

We have 6 different types of nodes:

• Commonsense entity node NCE in the knowledge graph.
We only consider 150 entities from the VG dataset.

• Commonsense predicate node NCP in the knowledge
graph. We only consider 50 predicates from the VG
dataset.

• Commonsense superclass entity node NCXE in the

Figure A3. An illustration of adaptive refinement. Left: the
initial confusion matrix R0; Right: the confusion matrix R5 after
5 training epochs.

knowledge graph. This includes a set of specialized en-
tity nodes at various levels, corresponding to overarching
categories of entities.

• Commonsense superclass predicate node NCXP in the
knowledge graph. This includes a set of specialized
predicate nodes at various levels, corresponding to over-
arching categories of predicates.

• Scene entity node NSE in the scene graph. Derived from
the commonsense entity node, each scene entity (SE)
node NSE is additionally linked with a bounding box,
i.e., NSE ⊆ [0, 1]4 ×NCE.

• Scene predicate node NSP in the scene graph. Originat-
ing from the commonsense predicate node, each scene
predicate (SP) node NSP connects a pair of SE nodes,
i.e., NSP ⊆ NSE ×NSE ×NCP.

We also have 3 types of edges to connect these nodes:

• Commonsense edges EC in the knowledge graph. These
edges within the commonsense graph EC delineate rela-
tionships between each node pair in both sets, function-
ing as a reservoir of general knowledge about objects.
Examples include connections like man-wears-shirt
and cat-is-animal.

• Scene edges ES in the scene graph. These edges encap-
sulate the relationships within the scene graph, linking
scene entities and predicates to denote interactions and
spatial relationships in a given scene.

• Bridge edges EB connecting commonsense nodes and
scene nodes. These bi-directional bridge edges link an
entity or predicate from the scene graph to its corre-
sponding labels in the commonsense graph. Given the
symmetric nature of the relation, the bridge edges are
implemented as bi-directional directed edges with shared
weights.

A.3. Adaptive Refinement

To provide insights into the adaptive refinement process in-
troduced in Section 3.7, we present a visualization of the

initial confusion matrix R0, along with the updated confu-
sion matrix R5 after 5 training epochs in Figure A3. The
initial confusion matrixR0 exhibits strong performance in
general classes with more samples. In contrast, the updated
versionR5 strives for balanced accuracy across all predicate
classes. Simultaneously, rather than the initial matrix which
aims to reveal surface-level biases, the updatedR5 shifts its
focus to uncovering deeper and subtle correlations between
predicate classes, as indicated by more minor values off the
diagonal (e.g., near with along/and/between).

B. More Experimental Results

B.1. Experiment Settings

Tasks. Following previous work [9, 85], we assess the ef-
fectiveness of our proposed approach in the context of two
standard SGG tasks: Predicate Classification (PredCls) and
Scene Graph Classification (SGCls). In the PredCls scenario,
our model is provided with ground-truth bounding boxes
and their associated object classes, with the sole task of pre-
dicting the predicate class. In the SGCls scenario, the model
is only provided with known bounding boxes while the ob-
ject classes are treated as unknown, and our SGG model is
required to predict both the object and predicate classes.

Evaluation Metrics. We evaluate the performance of the
SGG models by top-k mean triplet recall (mR@k) metric
on both the PredCls and SGCls tasks. In specific, mR is the
average recall score between the top-k predicted triplets and
ground-truth ones across all 50 predicate categories, which
promotes unbiased prediction for less frequently occurring
predicate classes. A subject-predicate-object triplet is con-
sidered a match when all three components are correctly clas-
sified, and the subject and object bounding boxes align with
an IoU (Intersection over Union) score of at least 0.5. In our
experiments, we report the mean recall on k = 20, 50, 100
to comprehensively evaluate the effectiveness of our method.
We also report the constrained (C) and unconstrained (UC)
performance results, depending on the presence or absence of
the graph constraint. This constraint restricts our SGG model
to predict only a single relation between each pair of objects.

Implementation Details. We use the Faster-RCNN [56]
as the object detector, which is based on VGG-16 [58] back-
bone provided by Zellers et al. [87]. In our experiments, we
train our model for 30 epochs, initializing the learning rate
at 1× 10−4. This learning rate will decrease to 1/10 of its
value after every 10 epochs. A single NVIDIA Quadro RTX
6000 GPU is used for all the experiments.

Fairness. To the best of our knowledge, our work is
the first to tackle the robustness challenge in SGG, therefore
there are no other established baselines for this task available.
However, we do our best to ensure a fair comparison: all
models rigorously follow the same evaluation protocol stated
in Section 4. Our experiments are designed to highlight: (1)

Corruption Type Abbreviation

Gaussian Noise gaus
Shot Noise shot

Impulse Noise imp
Defocus Blur dfcs

Glass Blur gls
Motion Blur mtn
Zoom Blur zm

Snow snw
Frost frst
Fog fg

Brightness brt
Contrast cnt
Elastic els
Pixelate px

JPEG Compression jpg
Sunlight glare sun

Water drop wtd
Wildfire Smoke smk

Rain rain
Dust dust

Table B1. Abbreviations of the 20 corruption types in our created
corrupted Visual Genome (VG-C) benchmark.

Compared to GB/EB-Net, HiKER-SGG enables a more com-
prehensive and efficient exploitation of KG information. (2)
Compared to other methods, the performance gain demon-
strates the effectiveness of KG in enhancing SGG. To ensure
a fair comparison with non-graph-based methods, we also
conduct an experiment that set the message propagation steps
as t = 0 to isolate the effect of KG. In the PredCls tasks, the
mR@50/100 accuracy remains competitive at 34.9%/37.1%.

B.2. Corrupted Visual Genome Benchmark

In addition to the clean Visual Genome dataset, we also
evaluate our method on the corrupted Visual Genome [38]
(VG-C) dataset, which comprises 20 versions of corrupted
images designed to simulate realistic corruptions that may
occur in real-world scenarios, thereby providing insights
into the models’ robustness under various corruption condi-
tions. Of these corruptions, the first 15 types of corruption
introduced by Hendrycks et al. [28] are widely recognized
as standard benchmarks for evaluating robustness within
the research community. To further align with real-world
deployment scenarios, we introduce 5 additional types of
natural corruptions to our evaluation:

• Sunlight glare: Sunlight glare refers to the interference
caused by excessive sunlight or bright light sources in an
image. It typically results in overexposed or washed-out
areas in the photo, making it difficult to discern details
and colors.

Table B2. Multi-hop accuracy on the PredCls task using the
Visual Genome [38] dataset. We compare our method with EB-
Net [9] method, assessing performance based on both level-1/2
superclass and final subclass accuracy.

Setting mR@20: UC/C mR@50: UC/C mR@100: UC/C

E
B

-N
et 1-hop 51.6 / 50.5 68.2 / 63.7 79.4 / 68.1

2-hop 45.4 / 40.2 62.8 / 48.9 73.7 / 52.0
3-hop 39.8 / 30.8 54.9 / 36.7 66.3 / 39.2

O
ur

s 1-hop 59.6 / 57.8 75.6 / 69.1 87.7 / 75.3
2-hop 50.8 / 45.2 67.7 / 53.8 79.6 / 57.2
3-hop 42.1 / 33.4 57.9 / 39.3 69.2 / 41.2

• Water drop: Water drop corruption occurs when wa-
ter droplets or condensation obstruct the camera lens or
affect the image sensor. This can create blurry or dis-
torted portions of the image and often results in a hazy
or unfocused appearance.

• Wildfire smoke: Wildfire smoke corruption pertains to
images taken in areas affected by heavy smoke. It causes
reduced visibility, a haze or smoky appearance, and can
obscure objects in the frame.

• Rain: Rain refers to the presence of falling raindrops
in an image. Rain can cause blurriness and distortions,
making it difficult to see objects clearly.

• Dust: Dust corruption results from particles or dust set-
tling on the camera lens or sensor. This can lead to the
appearance of dark spots or specks in the image, which
may obscure details and reduce clarity.

We establish 5 distinct severity levels for each corruption,
following Hendrycks et al. [28] to facilitate future bench-
marking. Table B1 presents a summary of the abbreviations
used for the various types of corruption. To illustrate the ef-
fects of these corruptions, we present the corrupted versions
of two example images in Figure B4.

We have already made the processing code for gen-
erating these corruptions available (VG-C benchmark)
at https://github.com/zhangce01/HiKER-SGG. This bench-
mark offers a comprehensive evaluation platform to assess
the robustness of SGG models in adverse conditions, and
we encourage the formulation of new SGG models to be
evaluated using this benchmark, emphasizing the real-world
applications of the SGG task.

B.3. Multi-Hop Accuracy

To further illustrate the robustness of our method, we com-
pare HiKER-SGG with EB-Net [9] by multi-hop mean recall
metrics on the Visual Genome dataset in Table B2. Our
evaluation criterion is as follows: a 1/2-hop prediction is con-
sidered correct if any of the final predicted predicate classes
in the triplets correspond to the true level-1/2 superclass. By
designing our model to predict from higher to lower levels,
our HiKER-SGG not only achieves state-of-the-art perfor-

Table B3. Training time, testing time, and parameter count of
HiKER-SGG compared with other methods.

Method Training (/epoch) Inference (/image) # params

KERN [8] 179.1 min 0.32 s 405.2M
GB-Net [85] 84.6 min 0.20 s 444.6M
EB-Net [9] 89.7 min 0.22 s 448.8M
HiKER-SGG 101.3 min 0.24 s 455.9M

mance in final subclass prediction, but also exhibits superior
performance in 1/2-hop superclass prediction, outperforming
the baseline method by an average of 8% and 5% in mean
recall, respectively. This performance highlights that when
unable to classify to the final subclass, HiKER-SGG tends
to more accurately predict the superclass, illustrating the
robustness of our hierarchical prediction approach.

B.4. Inference Time

In Section 4.3, we have shown that our HiKER-SGG ex-
hibits significantly enhanced robustness with both clean and
corrupted images with only about 10% training costs. In
Table B3, we also include inference time form comparisons.
A single NVIDIA Quadro RTX 6000 GPU is used for all
the experiments. When compared to state-of-the-art meth-
ods such as GB-Net [85] and EB-Net [9], the HiKER-SGG
model only extends the inference time by a slight 0.02-0.04
seconds. This minor increase is likely negligible in practical
real-world deployment scenarios.

C. Limitations
We identify two potential limitations of our HiKER-SGG
method: (1) For each new dataset, a hierarchical structure
must be re-discovered, potentially increasing complexity.
Additionally, the selection of similarity metrics also includes
bias or the prior incorporation by humans. We acknowledge
that the choice of measures does reflect a one-time prior hu-
man incorporation. However, once determined, the process
becomes systematic. This is fundamentally different from
the continuous, subjective interventions that characterize the
human bias we aim to avoid. (2) Our method is tested in
corrupted experiments on PredCls and SGCls tasks, assum-
ing the accuracy of detected bounding boxes. However, in
cases of severely corrupted images where the object detector
fails to recognize objects, our HiKER-SGG method may not
perform effectively. However, in our experiments, a simple
Faster-RCNN is able to identify nearly 50% of the GT boxes
even under corrupted scenarios; In contrast, given the GT
boxes, SGG models can only achieve about 11% mR@100
in SGCls task. This highlights the practical significance of
enhancing the robustness of SGG models. Besides, we also
notice that there is another line of work and benchmarks (e.g.,
Foggy Cityscapes) focusing on designing robust detectors.
Combining our approach with them could further enhance
the overall reliability of the system.

https://github.com/zhangce01/HiKER-SGG

Figure B4. All the 20 corruption types we used in our corrupted experiments. The first 15 types of corruption are introduced by
Hendrycks et al. [28], and we introduce 5 additional types of natural corruptions for a more comprehensive and practical evaluation.

	. Introduction
	. Related Work
	. HiKER-SGG
	. Problem Definition
	. Hierarchical Structure Discovery
	. Hierarchical Knowledge Construction
	. Scene Graph Initialization
	. Bridging Hierarchical Knowledge and SGG
	. Hierarchical Inference
	. Adaptive Refinement

	. Experiments
	. Experimental Settings
	. Results and Discussions
	. Ablation Studies

	. Conclusion
	. More Details about HiKER-SGG
	. Hierarchical Clustering
	. Scene Graph and Hierarchical Knowledge Graph
	. Adaptive Refinement

	. More Experimental Results
	. Experiment Settings
	. Corrupted Visual Genome Benchmark
	. Multi-Hop Accuracy
	. Inference Time

	. Limitations

