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Figure 1. The impact of the scale-up factor ϵ on navigation per-
formance on Gibson (val). To ensure that the results are solely
influenced by ϵ, all patches are selected without being filtered by
the sample strategy.

1. Hyper-parameter Analysis

Our SGM includes two hyper-parameters: the scale-up fac-
tor ϵ and the number of selected patches n. In this section,
we conduct experiments to determine the optimal values for
these hyper-parameters.

As shown in Fig. 3 of the main text, the scale-up fac-
tor ϵ specifies that the side length of cropped sub-map is
ϵ times that of the smallest fitting square box around the
known regions in the mt (semantic local map). The SGM
generates the unknown regions of the cropped sub-map to
expand the agent’s field of view. We set the value of ϵ
from small to large and measure its impact on navigation
performance on the SR and SPL metrics, as illustrated in
Fig. 1. The experimental results indicate that the perfor-
mance of navigation initially increases and then decreases
with the increasing value of ϵ, reaching an optimal perfor-
mance at ϵ = 140%. We infer that within a certain range,
the predictions of SGM are reliable. However, when the ex-
panded region is too large, patches far from known regions
are challenging to precisely predict without the known ad-
jacent patches. Therefore, performance declines when ϵ is
excessively large. Conversely, when ϵ is too small, the SGM
is insufficient to leverage its advantages, resulting in subop-
timal navigation performance. Therefore, we set ϵ = 140%
based on these results. Note that considering that the re-
gions belonging smallest fitting square box also contain un-
known regions, when ϵ = 140%, SGM expands the agent’s
field of view to nearly twice its original size

The number of selected patches n determines how
many patches are selected by the sampling strategy
multinomial(n, P ). Then the selected patches are fed
into the SGM to predict unknown patches. More patches
mean that the SGM can access more information. Con-
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Figure 2. The impact of patch number n. (a) represents the impact
on navigation performance in Gibson (val), where the scaled-up
factor ϵ = 140%. (b) illustrates the effect of the patch number n
on computational complexity, measured in terms of FLOPs (float-
ing point operations).

sequently, the navigation performance gradually increases
with the number of patches, as shown in Fig.2 (a). How-
ever, as depicted in Fig. 2 (b), the computational complex-
ity of the SGM also increases simultaneously. Therefore,
to balance performance and complexity, we finally choose
n = 59, which is approximately 30% of all patches.

2. Computation Complexity

Related modular works [6, 10, 11] typically employ an
encoder-decoder model to directly use the entire local map
as input for predicting the nearest frontier to the target [6],
the minimal distance to the target [11], or the absolute co-
ordinates of the target [10]. In contrast, our approach em-
ploys a sample strategy to select only a small portion (30%)
of patches for input.

We compare the computational complexity of our SGM
with PONI [6], where PONI proposes potential functions
that utilize the local semantic map as input to predict po-
tential frontiers (area potential function) and potential ob-
ject locations (object potential function), which are imple-
mented with UNet [7]. We employ the FLOPs (Floating
Point Operations) to measure computational complexity,



Table 1. Comparison of response examples from GPT-4 [5] and ChatGLM [4]. We annotate query (observed) objects in blue and contextual
objects in yellow in each sentence.

Prompt GPT-4 ChatGLM

In an indoor scene, what objects
are typically found surrounding
a bed?(Answer in one sentence)

Around a bed, you often find a nightstand, lamp, and
possibly a small chair or potted plant, along with
items like a clock, book, or decorative vase.

A bed is likely to have a pillow, sheet, and blan-
ket surrounding it.

In an indoor scene, what objects
are typically found surround-
ing a toilet?(Answer in one sen-
tence)

In an indoor scene, surrounding a toilet, you typi-
cally find items like a sink, a small trash can, and
often a toilet paper holder or a towel rack.

A toilet is likely to have a toilet paper roll, a toi-
let seat cover, a bidet, and a sink.

In an indoor scene, what objects
are typically found surrounding
a couch, chair and oven, re-
spectively?(Answer in one sen-
tence)

Surrounding a couch, you might typically find a TV,
coffee table, and potted plant; near a chair, there
could be a book, small table, and vase; and around an
oven, common objects include a refrigerator, sink,
and kitchen cabinets.

A couch is likely to have a pillow, a sheet, and a
blanket, a chair is likely to have a seat cushion,
a table, and a lamp, and an oven is likely to have
a burner, a cooking pot, and a counter.

In an indoor scene, what ob-
jects are typically found sur-
rounding a cabinet, chest of
drawers, sink and towel, re-
spectively?(Answer in one sen-
tence)

A cabinet is often surrounded by items like a chair,
table, and cushion; a chest of drawers may be ac-
companied by a bed, clothes, and pictures; a sink
typically has a mirror, towel, and toiletries nearby;
and a towel is usually found near a shower, bathtub,
or next to a sink.

A cabinet is likely to have a door, drawers, and a
knob, a chest of drawers is likely to have a draw-
ers, a knob, and a label, a sink is likely to have
a drain, a faucet, and a counter, and a towel is
likely to have a edge, a absorbent surface, and a
label.

In an indoor scene, what objects
are typically found surrounding
a bed, sofa and fireplace, re-
spectively?(Answer in one sen-
tence)

Around a bed, you’ll often find nightstands, a dresser
or chest of drawers, and sometimes a seating area or
plant; near a sofa, common items include a coffee
table, cushions, and a TV monitor; and surrounding
a fireplace, one might see comfortable seating, a rug,
and decorative pictures or a mirror.

A bed is likely to have a pillow, sheet, and blan-
ket, a sofa is likely to have a cushions, a sheet,
and a blanket, and a fireplace is likely to have a
mantle, a grate, a firebox, and a timer.

where a higher value of FLOPs indicates greater compu-
tational complexity and more time required for model in-
ference. The results in Fig. 2 (b) show that our SGM has
significantly lower computational complexity than PONI.
Although SGM, implemented with ViT, has larger param-
eters (135.83M) compared to PONI (4.37M), its processes
only of a subset of patches (when n = 59, the input di-
mension is b × (No + Ns) × 16 × 16 × 59) as opposed to
PONI, which uses the entire map as input (the dimension is
b× (No +Ns)× 480× 480). Therefore, SGM has a lower
computational complexity.

3. Prompt and Response of LLMs

The Tab. 1 presents some response examples from two
LLMs, GPT-4 [5] and ChatGLM [4]. Since LLMs are sen-
sitive to prompts, in addition to the prompts listed in Tab.
1, we pre-input some predefined prompts to ensure that the
responses are more applicable to goal categories in Object-
Nav (as shown in Tab. 2). An example of a pre-input prompt
is: ‘There is an indoor scene, all object categories include
but are not limited to chair, table, picture, cabinet, cushion,
sofa, bed, chest of drawers, plant, sink, toilet, stool, towel,
tv monitor, shower, bathtub, counter, fireplace, gym equip-

Table 2. Selected goal categories in Gibson, MP3D and HM3D.

Datasets Training Test

Gibson [8]

chair, couch, potted plant,
bed, toilet, dining-table,

tv, oven, sink, refrigerator,
book, clock, vase, cup,

bottle

chair, couch, tv, bed,
toilet, potted plant

MP3D [1]

chair, table, picture, cabinet, cushion, sofa,
bed, chest of drawers, plant, sink, toilet,

stool, towel, tv monitor, shower, bathtub, counter,
fireplace, gym equipment, seating, clothes

HM3D [9]
chair, sofa, plant, bed,

toilet, tv monitor, fireplace,
bathtub, mirror

chair, sofa, bed, plant,
toilet, tv monitor

ment, seating, clothes.’.
Comparing the responses of GPT-4 and ChatGLM in

Tab. 1, the GPT-4 provides more comprehensive responses
and predicts a greater number of contextual objects. How-
ever, as shown in Tab. 1 of the main text, the choice
of LLMs has minimal impact on navigation performance.
Therefore, we ultimately chose the open-source ChatGLM
for providing general knowledge.
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Figure 3. More visualizations. In each timestamp, we visualize the agent’s RGB view, local semantic map (including trajectory and long-
term goal (marked in blue dot)) and the generated map by SGM. The correctly predicted locations of target objects and context objects are
marked in blue circles and yellow circles, respectively.

Furthermore, to reduce model complexity and acceler-
ate inference speed, we pre-enumerate all possible object
combinations and obtain corresponding responses from the
LLMs in advance. We then extract and store the features of
these responses, which allows the model to directly access
the general knowledge (text features) based on the observed
object categories.

4. Goal Categories

Our experimental setup follows previous works, and the
adopted goal categories are detailed in Tab. 2. For Gib-
son, we follow [2, 6] and choose 15 object categories for
training and 6 object categories for testing. For MP3D, we
follow [6], where the same 21 object categories are used for
both training and testing. For HM3D, we adopt the same
experimental setup as [3], where 9 object categories are set
for training and 6 object categories are used for testing.

5. More Visualizations

The Fig. 3 illustrates more visualizations of the generated
maps of SGM during the navigation process. The range of
the generated map increases as the observed local map ex-
pands. As shown in Fig. 3, SGM precisely predicts the ori-
entation of the target object before it is observed. Notably,
in the first and third rows of Fig. 3, SGM accurately pre-
dicts the location of the target (indicated by the blue circle)
at the early stage of navigation. Based on this prediction,
the agent avoids unnecessary detours and follows an almost
optimal trajectory to reach the target, thus, our SGM sig-
nificantly enhances the navigation efficiency. Furthermore,
SGM not only accurately predicts the location of the goal
but also identifies the positions of other contextual objects
(indicated by the yellow circle), demonstrating its effective-
ness in contextual reasoning.
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