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A. Proof of Proposition 1
This section presents the proof of Prop. 1 in Sec. 4.

Given dataset {yi}Ni=1 with N images, we approximate
the original dataset distribution by using multi-Dirac distri-
bution, pdata(x) :=

1
N

∑N
i=1 δ(x − yi). Then, the distribu-

tion of the perturbed image x at random timestep t can be
calculated as:

pt(x) =

∫
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Let the noise prediction loss, which is generally used across
various diffusion models, be

L(ϵθ; t) = Ex∼pt(x)[|ϵ− ϵθ(x, t)||2] (13)

=

∫
Rd

1

N

N∑
i=1

N (x; styi, s
2
tσ

2
t I)||ϵ− ϵθ(x, t)||2dx ,

(14)

where ϵ ∼ N (0, I). Since the perturbation kernel
pt(x|x0) = N (x; stx0, s

2
tσ

2
t I), then

x = styi + stσtϵ⇒ ϵ =
x− styi

stσt
. (15)

Here, ϵθ is a ‘denoiser’ network for learning the noise ϵ.
Plugging Eq. (15) into Eq. (14), the loss can be reparame-
terized as:

L(ϵθ; t) =
∫
Rd

L(ϵθ;x, t)dx , (16)

where

L(ϵθ;x, t) =

1

N

N∑
i=1

N (x; styi, s
2
tσ

2
t I)||ϵθ(x, t)−

x− styi

stσt
||2 .

Eq. (16) means that we can minimize L(ϵθ; t) by minimiz-
ing L(ϵθ;x, t) for each x. As such, we find the ‘optimal
denoiser’ ϵ∗θ that minimize the L(ϵθ;x, t), for every given
x and t, as:

ϵ∗θ(x; t) = arg minϵθ(x;t)L(ϵθ;x, t) . (17)

The above equation is a convex optimization problem
with respect to ϵθ by which the solution can be obtained
by setting the gradient of L(ϵθ;x, t) w.r.t ϵθ(x; t) to zero.
Under the assumption that ϵθ has an infinite model capac-
ity, and can approximate any continuous function to an ar-
bitrary level of accuracy based on the Universal Approxi-
mation Theorem [40], then

∇ϵθ(x;t)[L(ϵθ;x, t)] = 0 (18)

⇒ 1

N
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2
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(19)

⇒ϵ∗θ(x; t) =
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B. Additional Experiments

B.1. Implementation details of the proposed
timestep clustering method

We implement a Variance Preserving (VP) [1, 18] pertur-
bation kernel for clustering the time interval. In particular,
we use st =

√
e

1
2βdt2+βmin−1, σt = 1/

√
e

1
2βdt2+βmin , t ∈

[ϵt, 1], βd = 19.9, βmin = 0.1, and , ϵt = 10−3. To obtain
t1 and t2, we utilize the CIFAR-10 [23] with dataset size
N = 5× 104. Specifically, Algorithm 1 is configured with
η = 2

256 , α = 0.9, and K = 5 × 104. This choice of η en-
sures the similarity of measurements in the RGB space. We
divide t ∈ [0, 1] into 104 discrete time steps. Consequently,
we employ a grid search to determine optimal values for t1
and t2 using the procedure outlined in Algorithm 1. For the
CelebA dataset [25], we utilize the same t1 and t2. And for
Variance Exploding (VE) perturbation kernel, we calculate
an equivalent σ1 and σ2

3. Results of Section 5.4 verify that
these choices of t1 and t2 return the best performance when
compared to other clustering methods.

3VE utilizes σ instead of t to represent the timestep. We choose σ1 and
σ2 such that SNRVE(σ1) = SNRVP(t1) and SNRVE(σ2) = SNRVP(t2).



B.2. Samples of Additional Generated Results

The generation samples displayed in Fig. 3, from the
CelebA and CIFAR-10 datasets, demonstrate that our Mul-
tistage strategy is capable of producing high-quality results.
Notably, it achieves this with reduced training and compu-
tational requirements in comparison to baseline methods.

Figure 3. Sample generations from Multistage LDM (CelebA
256× 256) and Multistage DPM-Solver (CIFAR-10 32× 32)

B.3. Comparison with multi-architecture multi-
expert (MEME).

In this subsection, we compare our multistage framework
with MEME diffusion model [21]. We reimplement the
MEME architecture following their released architecture in
Table 4 of [21]. We train both our multistage framework and
their MEME on the CIFAR-10 dataset and use DPM-Solver
for sampling. The results are shown in Tab. 5. From our
experiments, Multistage outperforms MEME in FID with
much fewer training iterations and total training PFLOPs.
However, because [21] only implements the architecture for
CelebA-HQ and FFHQ datasets, the method could poten-
tially achieve better results than our reported results with
more hyperparameter tunning. Also, the training is unsta-
ble and the loss explodes when we try to increase the model
capacity of MEME to be comparable to our Multistage.

B.4. Results in terms of the Precision and Recall
Metrics

We evaluate the precision and recall [41] of our proposed
architecture on the CIFAR-10 dataset, as results shown in
Tab. 6. The recall of the multistage diffusion models is
slightly better than their vanilla counterparts. This is poten-
tially because the multistage architecture introduces more
degree of freedom when t = 0 (a separate decoder for this
interval), resulting in more diverse data generation.

B.5. Ablation Study on the Network Parameters

In this subsection, we perform a series of experiments to de-
termine the best number of parameters within the attempted
settings for each stage of our model. For evaluation, we
use the best FID scores from all checkpoints. These evalua-
tions are conducted using the DPM-Solver with 20 NFE on
50, 000 samples. Here, the experimental settings are similar
to those used in Section 5.

For the Multistage DPM-solver on CIFAR-10 dataset.
The models are trained until they achieve their best FID
scores. For calculating FID, we follow the methodology
described by [29], using the tensorflow gan toolbox 4.

The design of the corresponding parameters for encoders
and decoders across different architectures, along with their
best FID scores, is detailed in Table 7. We explore vari-
ous architectures, aiming to maintain a consistent total num-
ber of parameters while varying the ratio of shared parame-
ters (encoder parameters) to the total number of parameters.
Our ablation study illustrates that Architecture 1 (our cho-
sen model) indeed exhibits the best FID performance.

For Latent Diffusion multistage models on CelebA-HQ,
models are trained for 500k iterations, and the best check-
points are used for evaluation. We compute the FID follow-
ing [8] using the torch-fidelity package [42]. The
parameter design and best FID are shown in Tab. 8. Our ab-
lation study shows the superiority of utilizing Architecture 4
(our chosen model) in terms of the reported FID values.

B.6. Ablation Study on the Number of Intervals

In this subsection, we conduct ablation study on the number
of intervals of our multistage architecture. We utilize Mul-
tistage DPM-Solver training on the CIFAR-10 dataset. To
extend Algorithm 1, we propose the procedure outlined in
Algorithm 2 (Appendix C). The splitting intervals and Re-
sults are given in Tab. 9. We compare the stages from one to
five. As observed, the three-stage architecture, adopted in
the main body of the paper, outperforms all other settings.

B.7. Experimental Setting of the Comparison Study
on Different Interval Splitting Methods

This section presents the experimental settings of previous
timestep clustering algorithms mentioned in Tab. 4. We re-
fer readers to the following references [20, 21] for imple-
mentation details. Specifically, we compare these methods
for the 3 intervals case on CIFAR-10 dataset by training our
proposed Multistage architecture with calculated intervals
until convergence. The timestep and SNR-based cluster-
ing algorithms are relatively easy to implement. For the
gradient-based clustering, we collect the gradients of the
trained network by the DPM-Solver for clustering. These
gradients are generated every 50k training iterations with a

4https://github.com/tensorflow/gan

https://github.com/tensorflow/gan


Table 5. Training and Sampling Efficiency with related works.

Dataset/Method Training Iterations(↓) GFLOPs(↓) Total Training PFLOPs(↓) FID(↓)
CIFAR-10 32× 32

MEME DPM-Solver [21] 6.0× 105 13.08 7.85 3.23
Multistage DPM-Solver (Ours) 2.5× 105 18.65 4.66 2.71

Table 6. Precision and Recall on CIFAR-10.

METHOD Precision(↑) Recall(↑)
DPM-Solver 0.660 0.613
EDM 0.677 0.620

Multistage DPM-Solver 0.657 0.615
Multistage EDM 0.672 0.629

Table 7. Ablation study of Multistage DPM-solver on CIFAR-
10 dataset. Current/Total: the number of the stage over the to-
tal number of stages. Shared: the encoder. Total: combined the
encoder and decoders. Total GFLOPS: averaged GFLOPS of all
stages weighted by NFE assigned to each stage during sampling
of DPM-Solver.

Current/Total Parameters GFLOPS FID(↓)

1

1/3 169M 29.95

2.35
2/3 108M 17.65
3/3 47M 6.31
Shared 43M 5.75
Total 237M 18.65

2

1/3 168M 27.57

2.9
2/3 138M 21.73
3/3 72M 9.65
Shared 68M 8.98
Total 242M 19.7

3

1/3 189M 29.43

3.1
2/3 160M 23.91
3/3 103M 13.7
Shared 98M 12.93
Total 256M 22.45

4

1/3 174M 26.54

3.34
2/3 126M 17.62
3/3 103M 13.7
Shared 98M 12.93
Total 207M 22.45

total of 450k iterations. We evaluate the performances of
these models based on their best FID scores across training
iterations.

Table 8. Ablation study of Multistage LDM on CelebA dataset.

Current/Total Parameters GFLOPS FID(↓)

1

1/3 238M 80.03

9.37
2/3 189M 64.95
3/3 161M 51.87
Shared 79M 16.69
Total 428M 65.75

2

1/3 206M 72.61

9.73
2/3 158M 57.85
3/3 108M 34.38
Shared 55M 11.6
Total 361M 54.37

3

1/3 274M 88.39

8.43
2/3 224M 72.97
3/3 170M 48.17
Shared 108M 22.71
Total 452M 69.22

4

1/3 316M 105.82

8.38
2/3 224M 72.97
3/3 170M 48.17
Shared 108M 22.71
Total 494M 76.19

C. Generalized Algorithm 1

In this section, we design a procedure to extend Al-
gorithm 1 for the cases of n ∈ {2, 4, 5}. Specif-
ically, we partition the timesteps into n intervals
[0, t1), . . . , [tn−2, tn−1), [tn−1, 1]. Intuitively, the intervals
need to minimize the summation of the total functional dis-
tance within each partition. This corresponds to the follow-
ing optimization problem.

min
t1,··· ,tn+1

n−1∑
k=0

tk+1∫
tk

tk+1∫
tk

S(ϵ∗ta , ϵ
∗
tb
)dtadtb

s.t. t0 = 0, tn = 1,

0 < t1 < t2 < · · · < tn−1 < 1 .

(21)

In order to solve Eq. (21) numerically, we propose
Algorithm 2. A solution of the program in step 9



Table 9. Ablation study on the number of stages

Number of Stages Current/Total Interval Parameters GFLOPS FID(↓)
1 1/1 - 108M 17.65 2.75

2 1/2 [0,0.476) 136M 26.59

2.562/2 [0.476, 1] 95M 16.85
Total - 188M 21.49

3
1/3 [0, 0.442) 169M 29.95

2.35
2/3 [0.442, 0.631) 108M 17.65
3/3 [0.631, 1] 47M 6.31

Total - 230M 18.65

4

1/4 [0, 0.376) 159M 29.78

2.67

2/4 [0.376, 0.526) 95M 16.85
3/4 [0.526, 0.726) 71M 11.97
4/4 [0.726, 1] 32M 4.41

Total - 284M 17.33

5

1/5 [0, 0.376) 154M 30.38

2.88

2/5 [0.376, 0.476) 88M 16.82
3/5 [0.476, 0.626) 88M 16.82
4/5 [0.626, 0.776) 27M 4.42
5/5 [0.776, 1] 21M 3.28

Total - 336M 17.03

Algorithm 2 Optimal Denoiser based Timestep Clustering for General Intervals n

1: Input: Total samples K, optimal denoiser function ϵ∗θ(x, t), interval number n, dataset pdata
2: Output: Timesteps t1, t2, . . ., tn−1

3: S ← ∅
4: for k ∈ {1, . . . ,K} do
5: yk ∼ pdata, ϵk ∼ N (0, I), tak

∼ [0, 1], tbk ∼ [0, 1]
6: Sk ← D(ϵ∗tak

, ϵ∗tbk
,yk, ϵk)

7: S ← S ∪ {
(
tak

, tbk ,Sk
)
}

8: end for

9: t1, · · · , ti−1 ← argmint1,··· ,ti−1

K∑
k=1

n−1∑
i=0

ti+1∑
ti

Sk1(tak
, tbk ∈ [ti, ti+1)),

10: s.t. 0 < t1 < t2 < · · · < tn−1 < 1

is obtained by discretizeing the time index into t ∈
{0.001, 0.026, . . . , 0.951, 0.976, 1}. We use the CIFAR10
dataset with K = 50000 to run the experiment. The follow-
ing table shows the results of different stage numbers n and
different split intervals:

D. Details on Training Procedures

Algorithm 3 Memory efficient training (per GPU)

1: Input: Total Training iterations T, Parameters θi, Inter-
val [ti−1, ti] for three stages (i = 1, 2, 3), GPU index
k

2: Output: Parameters θ∗
i

3: idx = k%3
4: for iter ∈ {1, . . . , T} do
5: Calculate loss and update θidx
6: end for

For the training, we employ the same training iterations



Algorithm 4 Time efficient training (per GPU)

1: Input: Total Training iterations T, Parameters θi, Inter-
val [ti−1, ti] for three stages (i = 1, 2, 3)

2: Output: Parameters θ∗
i

3: for iter ∈ {1, . . . , T} do
4: for idx ∈ {1, . . . , 3} do
5: Calculate loss and update θidx
6: end for
7: end for

and loss weights across all stages. Specifically, we pro-
pose two algorithms for multi-GPUs parallel training: (i)
memory-efficient strategy (Algorithm 3) where each GPU
updates parameters for a specific stage, requiring less mem-
ory, and (ii) time-efficient strategy (Algorithm 4) where all
GPUs update parameters from all stages. These two algo-
rithms are equivalent from an optimization perspective.


