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In the supplemental material, we provide more details
about the paper, including:
• Implementation Details.
• Running Time.
• More Visual Results.
• More Comparison Results.
• User Study.
• Failure Cases and Analysis.
We also provide a demo video to show the main idea
of our method and more 3D results, which can be found
on our project page at http://cic.tju.edu.cn/
faculty/likun/projects/Joint2Human.

1. Implementation Details

1.1. Training

We use an EMA rate of 0.9999 for all experiments. For
the training stage of the FOF autoencoder, we trained it for
three days on 8 NVIDIA A100 GPUs, with a batch size
of 32. To represent and generate a high-quality 3D hu-
man geometry, the channel number N of the FOF feature
maps needs to be set to at least 32. However, it is hard
to model high-dimensional and multi-channel data for dif-
fusion models. Following the latent diffusion model [9]
to address this issue, we utilize an auto-encoder to com-
press the raw high-dimensional data space into a lower-
dimensional latent space, which encodes each shape into
a normal distribution. In detail, we adopted a VAE-like
auto-encoder, which contains the encoder E and decoder
D. Given a FOF feature x ∈ R512×512×32, the encoder
E encodes FOF into latent vectors z = E (x), and the de-
coder D decodes the latent vectors back to the original FOF
space x̃ = D (E (x)), where x̃ ∈ R128×128×8. We pre-
trained the auto-encoder with the reconstruction loss and
KL-regularization loss. The loss for the auto-encoder train-
ing process can be expressed as

Lvae = ∥x̃− x∥1 + λ (DKL (qϕ (z|x) ||p (z))) , (1)

the first item is reconstruction loss, calculating the l1 loss
between ground-truth FOF and results from the decoder D.
The second term calculates KL-divergence loss between the
target p (z) distribution and the latent space. qϕ (z|x) is the
approximation to the true posterior.

Next, we use the vectors in the latent space as training
data for the diffusion model. For the diffusion model train-
ing stage, we trained it for eight days on 8 NVIDIA A100
GPUs, with a batch size of 64. Following the DDPM [2],
we also use the U-net [10] as our backbone. We adopt
the standard Adam optimizer, maintaining a learning rate
1e-4 and a linear learning rate warm-up schedule spanning
10,000 iterations. The total number of timesteps is set as
T = 1000, T ′ = 200 for the main diffusion in our pipeline.
Our pipeline involves training multiple models; both the hu-
man pose embedding and image embedding branches can
be switched on or off and applied simultaneously. We im-
plement this by training multiple models.

1.2. U-Net Related Settings

Our diffusion model adopts the U-Net architecture. The
hyperparameters of U-Net are set with 128 channels and
three residual convolution blocks. Apart from that, we im-
pose a self-attention mechanism at the fusion of information
interactions between feature layers. During upsampling, the
number of feature channels at each level changes from 128
to 1024. To make the model more deeply aware of the con-
ditional semantic information, we learn an additional con-
dition encoder to map the conditional input into the latent
vector with more centralized information.

2. Running Time
We have tested the running time of each stage of our

method shown in Tab. 1. In addition, our approach is more
efficient in computation. Different from the previous ap-
proaches [3–5, 7, 11], we don’t need to use differentiable
rendering for additional optimizations. Our method can di-
rectly generate detailed 3D human geometry using 2D dif-
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Table 1. The running time of each stage of our method.

Main diffusion
High-frequeney

enhancer
Recarving strategy

Time(s) 50.01 0.04 8.92

fusion models. In fairness, we compare methods that specif-
ically concentrate on generating 3D human geometry. For
consistency, we assess the time required to generate a hu-
man body in a single sample using the same hardware de-
vice. Chupa [5] requires an average of 2min39s for gener-
ating a human body, whereas our method achieves the same
task in just 59 seconds on average.

3. More Visual Results
Here, we provide additional generation results of our

model. Please note that our approach can simultaneously
guarantee global structure and local details with low com-
putational cost. Figure. Fig. 1 shows more results guided by
the same pose with the help of our compact spherical em-
bedding of 3D joints, Fig. 2 shows the generation results by
the text-guided control. Fig. 3 shows the generation results
for the loose clothes.

4. More Comparison Results
Modeling of Loose-fitting Clothes. Our method outper-
forms previous methods in modeling loose clothing like
dresses and loose coats. Because we do not have strong
dependencies on human parameterization models such as
SMPL[6]/SMPL-X[8]. Fig. 3 shows the results of the gen-
eration of loose clothing human body, and compares it to
other methods. Our generated results are more natural and
realistic; the other two methods model clothes more in-
clined to be close to the skin.
Diversity of Human Generation. With the pose input
(SMPLx or our compact spherical embedding of 3D joints)
as our condition, our model can generate results aligned to
input with better diversity compared to Chupa [5]. The code
of AG3D [1] is not friendly to the support of pose control,
so we only compare our model with Chupa. Fig. 4 shows
the generation results produced by different algorithms un-
der the given human pose guidance.

5. User Study
To better evaluate our model, we conduct a perceptual

study to ask the users about their preferences for the gen-
erated body geometry. Users are asked to choose among
our approach and two other current state-of-the-art meth-
ods. The results of the survey are shown in Tab. 2 .

In the study, we present the human generation results
of AG3D (Method A) [1], Chupa (Method B) [5], and our

method (Method C) in video form. The study is divided
into two sections, with a total of 7 cases. Cases 1 through
5 focused on examining individual generation performance,
with each case comprising three consistent questions. These
questions pertained to generating a 3D human shape with
respect to 1. Global Structure, 2. Local Detail, and 3.
Overall Impression. Each participant was asked to rank
the results shown in the video from best to worst based on
these three metrics. Tab. 2 demonstrates that our approach
emerged as the most popular choice.

In the second section, our focus shifts to examining the
diversity of human generation. Since AG3D does not incor-
porate guidance from the human body pose, our analysis in
this section is limited to methods B and C. Unlike section
1, where video presentations were used, we presented users
with multiple image results in two cases, prompting them
to compare the diversity between the two methods. Each
case included six results for both methods. During the user
study, we collected a total of 123 responses, comprising 54
females and 69 males across different age groups (6 users
under 18, 113 users between 18 and 40, 2 users between 40
and 60, and 2 users above 60). In section 2, 70.73% of the
users considered the diversity of our methods to be superior
to Chupa (Method B).

Table 2. Proportion of popularity of different methods in different
metrics.

Method AG3D (A) Chupa (B) Ours (C)

Global Structure 18.70% 32.20% 49.10%
Local Detail 18.05% 29.92% 52.03%
Overall Impression 19.02% 29.27% 51.71%
Diversity of Generation - 29.27% 70.73%

6. Failure Cases and Analysis.
Fig. 5 illustrates examples of unrealistic artifacts appear-

ing on the generated results due to the extreme poses, which
fall outside the distribution of the training data. Addition-
ally, there are a small number of cases involving broken legs
and arms, which are limited by the fact that the FOF data
was generated by sampling from a single viewpoint.
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Figure 1. More generated results guided by specific poses with the help of our compact spherical embedding of 3D joint (left).

“A man in a jacket and jeans.” “A girl with long hair in a dress.”“A woman wearing a coat.” “A man in a suit.”

Figure 2. Results of text-guided human generation.
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Figure 3. Human generation with loose clothing.



Figure 4. We randomly select fixed poses as the respective conditional information inputs for each model. Without fixing the random
number seed, the model randomly samples to generate human bodies, our model has better diversity compared to Chupa [5].

Figure 5. Failure cases. (a) and (b) depict the results with the human pose outside the data distribution, and (c) portray instances of leg
breaks.
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