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1. Network Architecture

The detailed network architecture of KP-RED is shown in
Fig. 1.

For the Retrieval module, we first use the PointNet-
based [10] keypoint predictor to discover the keypoints
(Fig. 1 (a)). Then we use a 2-layer MLP to extract point-
wise features. We aggregate the local features of each key-
point within its support region and adopt a YOGO-like [13]
self-attention module to discover region-to-region relations
(Fig. 1 (b)). We replace the Farthest Keypoint Sampling
strategy in [13] with our semantic-consistent keypoint de-
tection approach. We use the relation inference module [13]
to extract the region tokens. Finally, we concatenate all lo-
cal retrieval tokens of each region in the uniform order and
yield the global token by concatenating them together.

During training, we adopt the auxiliary reconstruction
task to supervise the learning of the Retrieval module.
Given the region tokens and the target keypoints, the re-
construction network generates the corresponding region of
the deformed shape. We randomly sample NS = 192 vec-
tors P ∗ ∈ R3 on a unit sphere and concatenate them with
the region tokens and target keypoints together to serve as
the input of the reconstruction network. The reconstruc-
tion network is required to project P ∗ from the unit sphere
to the corresponding positions on the deformed shape indi-
cated by the retrieval tokens. The reconstruction network is
constructed with the 4-layer PointNet (Fig. 1 (c)).

For the Deformation module, we use the same key-
point predictor as the Retrieval module to detect keypoints
(Fig. 1 (a)) and the same architecture for the self-attention
module to extract region tokens (Fig. 1 (b)). We follow [7]
and compute the cage with NC = 42 vertices to control
deformation. Given the extracted region token of each key-
point, we concatenate it with a one-hot encoding of the key-
point index and use a 3-layer MLP to predict the influence
vector of the keypoint (Fig. 1 (d)).

*Authors with equal contributions.

2. Partial Shape Generation
Given an occlusion ratio, we augment the point cloud of
the full shape to generate partial shape by random slicing.
Given the point cloud P ∈ R3×N with NP points and the
occlusion ratio ro, our objective is to find a plane nT p = d
with normal vector n ∈ R3×1 and distance d ∈ R, such that
we can slice the point cloud P with this plane and remove
all points on one side of the plane, so that roNP points are
removed. We first randomly choose the plane normal n.
Then we adjust the position of the plane, such that the given
ratio of points are removed after slicing. Specifically, the
distance of the plane d can be derived from the following
equation,

d = ftop(n
TP, roNP ) (1)

where ftop(A, k) denotes the top k value in the vector A.
All points that satisfy nT p ≥ d are removed.

3. Evaluation for Partial Shapes
The typical bilateral Chamfer Distance (CD) between two
shapes S1, S2 is the sum of two Unilateral Chamfer Dis-
tance (UCD),

fCD(S1, S2) = fUCD(S1, S2) + fUCD(S2, S1) (2)

where the UCD is defined as,

fUCD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x− y||22 (3)

For each point in S1, fUCD(S1, S2) finds the nearest point
in S2, and sums the square of distance up.

When handling partial input, the typical bilateral CD
does not reflect the R&D quality well since some parts
of the target shape Stgt are missing and not every point
in the deformed shape Ssrc2tgt has corresponding point
in Stgt. Therefore, we use Unilateral Chamfer Distance
fUCD(Ssrc2tgt, Stgt) as the evaluation metrics for partial
shape reconstruction.
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Figure 1. Network architecture of KP-RED.

Evaluation on Scan2CAD Dataset [1]. The target point
cloud in Scan2CAD is noisy and inaccurate due to the limi-
tations of the depth sensors and thus not suitable to calculate
the evaluation metrics. Therefore, we use the ground truth
models to generate the clean target point cloud and use it to
calculate the Unilateral Chamfer Distance metrics. Specif-
ically, we use the ground truth pose to render the object to
obtain its ground truth depth and then back-project the depth
to obtain the clean point cloud.

4. Results with Top-K Retrieval Candidates
We further provide top-1, 5, 10, 25 results on 4 datasets in
Tab. 1. Our method surpasses all competitors by a large
margin under all evalution metrics.

5. Oracle Retrieval Experiments
In Tab. 2, we perform an oracle retrieval experiment by de-
forming all the source shapes and choosing the one with
minimum Chamfer Distance error. Our deformation mod-
ule achieves the lowest Chamfer Distance error with respect
to [11] and [8].

6. Definitions of Loss Terms
Full shapes. We adopt two loss terms to train the deforma-
tion module with full shapes. The first one is the similarity
loss Lsim. Given the target shape Stgt and the deformed
shape Ssrc2tgt, we define the similarity loss as

Lsim = fCD(Ssrc2tgt, Stgt), (4)

where fCD denotes the Chamfer Distance.
The second one is the keypoint regularization loss Lkpt.

Given the predicted keypoints of the source shape Ksrc, we
use Farthest Point Sampling to sample NK points Pfps on

PartNet
Method Top-1 Top-5 Top-10 Top-25

U-RED [5] 0.658 0.609 0.551 0.488
Uy et al. [11] 0.726 0.688 0.637 0.535
ShapeFlow [8] 0.452 0.403 0.340 0.247

Ours 0.185 0.102 0.089 0.084
PartNet 25% Occlusion

U-RED [5] 0.226 0.203 0.180 0.172
Uy et al. [11] 0.214 0.199 0.179 0.165

Ours 0.085 0.059 0.049 0.049
PartNet 50% Occlusion

U-RED [5] 0.278 0.265 0.255 0.228
Uy et al. [11] 0.328 0.267 0.241 0.218

Ours 0.103 0.082 0.056 0.048
Scan2CAD

U-RED [5] 0.316 0.249 0.207 0.183
Uy et al. [11] 0.293 0.255 0.210 0.190

Ours 0.097 0.081 0.060 0.052

Table 1. Average (Unilateral) Chamfer Distance with top-K re-
trieval. Overall best results are in bold.

Method Chair Table Cabinet Average
Uy et al. [11] 0.643 0.564 0.494 0.592

Uy et al. w/ IDO [11] 0.583 0.482 0.494 0.526
ShapeFlow [8] 0.167 0.223 0.353 0.208

Ours 0.089 0.079 0.097 0.084

Table 2. Chamfer Distance metrics for deformation module using
oracle retrieval. Overall best results are in bold.

the source shape. The regularization loss is defined as,

Lkpt = fCD(Ksrc, Pfps). (5)



Partial shapes. When handling the partial shapes, we
train the parameters of keypoint predictor with two loss
terms. The first one is the unilateral similarity loss Lusim,

Lusim = fUCD(Ssrc2tgt, Stgt), (6)

where fUCD denotes the Unilateral Chamfer Distance.
The second one is the weighted keypoint loss as intro-

duced in the main text.

7. Limitations
• The effectiveness of R&D heavily relies on the availabil-

ity of a pre-prepared model database consisting of con-
siderable amounts of high-quality CAD models. Despite
the existence of large-scale CAD model datasets such as
ShapeNet [2], there are still some categories that remain
uncovered. Moreover, it is essential to ensure that the
source shapes in the database are representative and cover
the shape variation across each category as much as pos-
sible.

• Currently the performance of KP-RED is highly influ-
enced by the accuracy of pose from off-the-shelf pose es-
timation methods [6, 15, 16]. However, since it is hard to
guarantee good generalization ability of these methods in
numerous real-world scenarios, the performance of R&D
will also deteriorate due to the failure of pose estimation.
One possible solution is to integrate pose estimation into
the R&D pipeline via vector neuron network [3, 4] where
SO(3) invariant features can be extracted for downstream
tasks, eliminating the influence of pose.

• While the cage-based deformation approach yields high-
quality results and preserves fine-grained geometric de-
tails, it is theoretically unable to generate a completely
perfect match to the target shape. As a result, the theoret-
ical upper bound of our performance is limited. To over-
come this limitation, additional neural techniques [12, 14]
can be utilized to refine the R&D results further.

8. Additional Qualitative Results

Fig. 2 visualizes detected keypoints on PartNet [9], which
demonstrates the semantic consistency of the detected key-
points. Fig. 3 shows failure cases on PartNet. Many
failure cases result from shape variations that are not en-
compassed within the model database, such as a chair fea-
turing a separate footrest or a table with an open drawer
depicted in Fig. 3. Fig. 4 shows additional qualitative re-
sults on Scan2CAD [1]. KP-RED is much more robust in
the real-world scenario and yield more precise R&D results
than the competitors. Fig. 5 displays visualization for full
shapes on PartNet [9]. Fig. 6, Fig. 7 and Fig. 8 exhibits
qualitative comparisons for partial shapes under different
occlusion levels on augmented PartNet. The results reveal
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Figure 2. Visualization of detected keypoints on PartNet [9]. We
use different colors for different keypoints to show their semantic
consistency. The R&D results are rendered on the RGB images
for better visualization.

our KP-RED performs robustly under different occlusion
scenarios.
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Figure 4. Additional qualitative results on Scan2CAD [1]. The R&D results are rendered on the RGB images for better visualization.
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Figure 5. Additional qualitative results for full shapes on PartNet.
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Figure 6. Additional qualitative results for partial shapes with the occlusion ratio of 75% on augmented PartNet.
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Figure 7. Additional qualitative results for partial shapes with the occlusion ratio of 50% on augmented PartNet.
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Figure 8. Additional qualitative results for partial shapes with the occlusion ratio of 25% on augmented PartNet.
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