
Learned Lossless Image Compression based on Bit Plane Slicing

Supplementary Material

Table 5. Ad hoc test of generalizability by evaluating the dataset
compression performance on three low-resolution datasets with a
model trained on ImageNet32.

Method CIFAR10 ImageNet32 ImageNet64

IDF [13] 3.60 4.18 3.94
iVPF [42] 3.49 4.03 3.79

SHVC [28] 3.41 3.98 3.71
iFlow [41] 3.36 3.88 3.65

ArIB-BPS (ours) 3.38 3.91 3.67

A. Details In Experiment
A.1. Implementation Details

We split the last 5,000, 50,000, and 50,000 images as
the validation sets for CIFAR10, ImageNet32, and Ima-
geNet64, respectively. We have observed that employing
distinct Φs and Θ in the same plane can enhance perfor-
mance, although it tends to be prone to overfitting. Conse-
quently, for the smaller CIFAR10 dataset, the parameters of
Φs and Θ in the same plane are shared to mitigate this risk.
However, for the larger datasets, these parameters are not
shared. In alignment with prior studies, we employ dropout
in CIFAR10 to prevent overfitting. Furthermore, we note a
similar tendency for overfitting in our method when applied
to ImageNet32, and as such, we also employ dropout in this
context. The models selected for use are those that demon-
strated the best performance on their respective validation
sets.

A.2. Experiments on Generalizability

Following [13, 28, 41, 42], we use the model trained on Im-
ageNet32 to evaluate the dataset compression performance
on CIFAR10 and ImageNet64 as an ad hoc test of gener-
alizability. As illustrated in Table 5, the performance on
all datasets behaves similarly to the performance on Ima-
geNet32, indicating that our method has no issues with gen-
eralizability.

A.3. Performance Comparison to SHVC-ArIB

We note that precise values for the single image com-
pression performance of SHVC, as well as the compres-
sion performance of SHVC-ArIB, are not available. Qual-
itatively, they are inferior to the dataset performance of
SHVC. Moreover, the authors present a figure (Figure 4
in [28]), which depicts the additional overheads of SHVC
and SHVC-ArIB for single image compression, using the
dataset compression performance of SHVC as a reference.

From the figure, it’s evident that the overhead of SHVC
surpasses 0.8 BPD on three low-resolution datasets. The
authors further point out that SHVC’s overhead is approxi-
mately 20 times that of SHVC-ArIB. Consequently, when it
comes to single-image compression, our performance sur-
passes SHVC-ArIB by an average of more than 0.10 BPD
on low-resolution datasets. Furthermore, the authors in-
dicate that the additional overhead of SHVC-ArIB comes
from performance cost, implying a similar performance
between dataset compression and single-image compres-
sion for SHVC-ArIB. Hence, our approach also surpasses
SHVC-ArIB in dataset performance, exhibiting a margin
that exceeds an average of 0.10 BPD on low-resolution
datasets.

B. Details In Method
B.1. Discretized Sampling

In prevalent lossless compression methodologies based on
VAEs, the latent variables manifest as continuous variables
during the training phase, necessitating discretization for
the subsequent compression process, wherein the probabil-
ity density function p(z) is employed. Consider ẑ as the
discretized value situated within the interval [a, a+δa]. The
associated probability mass can be determined using the in-
tegral P (ẑ) =

∫ a+δa

a
p(z)dz, which, given a sufficiently

small δa, can be approximated as P (ẑ) ≈ δa · p(ẑ). Analo-
gously, Q(ẑ) is computed in a similar fashion.

Under these circumstances, the bit rate for ẑ can be ex-
pressed as follows:

Rẑ = − log

(
P (ẑ)

Q(ẑ)

)
≈ − log

(
p(ẑ) · δa
q(ẑ) · δa

)
= − log(p(ẑ)) + log(q(ẑ)).

(13)

However, discretization precision k is relatively small
for a small subset of images, leading to a larger δa. This
discrepancy results in a significant bias between the esti-
mated and actual bit rates, adversely affecting the com-
pression performance of single images. To mitigate this
issue, we employ a sampling strategy to approximate the
discretization process. Due to the gradient bias introduced
by the rounding operation, we restrict the application of this
method exclusively to fine-tuning the model, rather than in-
corporating it throughout the entire training process.

In our method, a latent variable z is sampled from a lo-
gistic distribution Logistic(µq, 1), and discretized into in-



tervals such that each interval has an equal probability mass
under Logistic(µp, 1). The continuous z is sampled with
z = ϵ + µq , where ϵ ∼ Logistic(0, 1). Given a discretiza-
tion precision k, the number of intervals is 2k. The cu-
mulative distribution function of z under Logistic(µp, 1)
is sigmoid(z − µp), and the lower, middle, and upper
cumulative distribution values for the target interval are
⌈2k·sigmoid(z−µp)⌉−x

2k
, where x = 1, 0.5, 0, respectively.

Thus, we could obtain the lower, middle, and upper points
of the interval. We use the middle point of the interval as
the discretized latent variable ẑ. We then calculate the pos-
terior and prior probabilities of ẑ using the endpoints under
Logistic(µq, 1) and Logistic(µp, 1). This approach leads to
the derivation of Equation 9.

B.2. Entropy Coder

The entropy coding could be accelerated when intermedi-
ate results are precalculated, especially when the number of
distributions is small. In PILC [16], the authors employ a
single logistic distribution for probability modeling and in-
troduce ANS-AI, which proves to be faster than the range
ANS (rANS) [8] used in other methods. ANS-AI is a semi-
dynamic entropy coder that precalculates intermediate re-
sults stored in a table, whereas rANS is a dynamic coder
requiring time-consuming multiplication and division.

In our method, there are three types of symbols following
distinct distributions that need to be entropy coded, and we
employ different entropy coding methods for each type.

The first type consists of latent variables following a uni-
form distribution, where different symbols have equal prob-
ability mass. Since the number of values is a power of 2, we
encode them by simply appending their binary representa-
tion to the bitstream, which is fast.

The second type comprises latent variables following a
logistic distribution. Although the distribution has only one
parameter, we observe that discretizing it adversely affects
performance. Moreover, the number of such symbols occu-
pies a small portion (approximately 3.8%), making it non-
critical for accelerating entropy coding. Therefore, we use
rANS for encoding.

The third type includes bits following a Bernoulli distri-
bution. The number of such symbols occupies a primary
portion (approximately 92.4%), and thus is crucial for ac-
celerating entropy coding. The Bernoulli distribution also
requires one parameter. Moreover, we find that it does not
affect the performance much if we discretize the parame-
ter with relatively small precision. Therefore, we employ
a semi-dynamic entropy coder. Though ANS-AI demon-
strates very fast coding speed, it incurs an unacceptable per-
formance degradation for our method. Thus, we choose to
employ FSE 1, which could achieve a bit rate close to the

1https://github.com/Cyan4973/FiniteStateEntropy

theoretical bit rate.
FSE is a static entropy coder, compatible with symbols

with a fixed distribution. It precalculates an encoding ta-
ble for encoding and a decoding table for decoding. Each
symbol follows a Bernoulli distribution using one of the
predefined parameters. Thus, we modify FSE into semi-
dynamic FSE for entropy coding bits. Considering there
are m probable parameter values, we precalculate m en-
coding tables and m decoding tables, each with different
indexes. To encode or decode a bit, we input the distribution
index and use it to obtain the corresponding table, then use
the table for FSE encoding and decoding. It could achieve
approximately twice the acceleration for entropy encod-
ing with comparable entropy decoding speed compared to
a binary rANS. It is noteworthy that in our method, en-
tropy coding constitutes a minor portion of the coding time,
whereas inference time emerges as the predominant fac-
tor. For example, when compressing a 512x512 image with
the ImageNet64-trained model, entropy coding accounts for
5.2% and 4.5% of the encoding and decoding times, respec-
tively. However, various methods, such as pruning, quanti-
zation, and the deployment of more powerful accelerators,
can be employed to expedite the inference stage. In scenar-
ios where these techniques are implemented, our accelera-
tion in entropy coding stands poised to provide additional
acceleration to the overall coding process.

https://github.com/Cyan4973/FiniteStateEntropy

	. Introduction
	. Related Work
	. Method
	. Background
	. Bit Plane Slicing for Autoregressive Initial Bits
	. Dimension-Tailored Autoregressive Model

	. Experiments
	. Architecture and Training Details
	. Compression Performance
	. Ablation Studies
	Dimension-Tailored Autoregressive Model
	Discretized Sampling


	. Conclusion
	. Details In Experiment
	. Implementation Details
	. Experiments on Generalizability
	. Performance Comparison to SHVC-ArIB

	. Details In Method
	. Discretized Sampling
	. Entropy Coder




