
Supplementary Materials for Learning for Transductive Threshold Calibration
in Open-World Recognition

In the supplementary materials, we provide: 1) math-
ematical derivations and proofs in Appendix A using the
same notations as in the main paper, 2) additional visual-
izations and ablation study results in Appendix B, 3) more
implementation details in Appendix C, and 4) A list of fre-
quently asked questions (FAQ) in Appendix D.

A. Detailed Proof and Derivation
A.1. Definitions of TPRk and TNRk in Paper Eq.(7)

We first provide a formal definition of TPRk introduced in
Paper Eq.(7). Let f1, f2, ... be M -dimensional embeddings
for a dataset D projected by an trained DML model whose
outputs are L2 normalized. For a given class k, its em-
bedding vectors tend to form a same-class sample cloud,
while being away from embeddings of other classes. In
this model, the class-specific TPR score reflects intra-class
representation compactness, while the class-specific TNR
score represents inter-class representation separation. Such
structure is often modeled with the von Mises-Fisher (vMF)
distribution as in [8, 10, 13, 20, 23, 27, 29, 34], where a con-
centration parameter κ is used to indicate the representation
compactness for said class. According to the Sra’s approxi-
mation [24], the vMF concentration κ can be estimated as:

κ =
|c| · (M − |c|2)

1− |c|2
(1)

where c =
∑

i∈D fi·1yi=k∑
i∈D 1yi=k

is the average of all embeddings
belonging to this class, and |c| is the L2 norm of c. Given a
fixed embedding dimension M , κ is only a function of |c|,
where | · | denotes the L2 norm. Recall that in the paper we
define TPRk the same as |c|. Hence, TPRk can be regarded
as a class-specific TPR indicator with the following prop-
erty: TPRk → 1 when the intra-class embeddings are in
close proximity to each other (dense), and TPRk → 0 when
the intra-class embeddings are far apart (loose).

We also explain the definition of TNRk. In general,
for a well-trained embedding model, true negative pairs
tend to exhibit small inter-class cosine similarities, whereas
false negative pairs tend to have larger inter-class cosine
similarities. Consequently, the numerator of TNRk =

∑
i,j∈D

(1−aij)·1yj ̸=yi=k∑
i,j∈D

1yj ̸=yi=k
captures the true negative pairs while

the denominator gives all negative pairs. This effectively
approximates the TNR of this class within the dataset D.

A.2. Proof for Paper Theorem 1

We first show that TNRk can be expressed as a function
of the sum of cosine similarities for all positive pairs of
the given class (whose proof is given below), and give
the mathematical proof for paper Theorem 1. First, let
f1, f2, ..., fn be image embeddings belonging to class k
where n =

∑
i∈D

1yi=k, TPRk can be expanded as follows:

TPRk =
∥
∑

i∈D fi · 1yi=k∥∑
i∈D 1yi=k

=
1

n
·

√√√√∥
n∑

t=1

ft∥2

=
1

n
·

√√√√2
∑

i,j=1,2,...,n; i<j

⟨fi, fj⟩+
n∑

t=1

∥ft∥2

=
1

n
·
√

2
∑

i,j=1,2,...,n; i<j

cos(θij) + n

=
1

n
·
√

2
∑

aij∈A

aij + n

(2)

where A is the collection of all pair-wise cosine similarities
for nodes belonging to said class. Note that, we only count
aij and aji once in A, i.e i < j for all aij .

Now, we provide the derivation for Paper Theorem 1. Let
N same be the set of nodes which contains all instances be-
longing to a given class. For each vertex i ∈ N same whose
neighbourhood is Ni, if Ni is large enough to cover all
same-class vertices for vertex i (i.e., N same ⊂ Ni), TPRk



can be expressed as:

TPRk =

√√√√2
∑

i,j∈N same,i<j

1yi=yj
· aij + |N same|

|N same|2

=

√√√√ ∑
i∈N same

∑
j∈Ni

1yi=yj
· aij + |N same|

|N same|2

=

√√√√√√√ |N i|
2|N same|

·
2

∑
i∈N same

savgi

|N same|︸ ︷︷ ︸
average avg density

+
1

|N same|

=

√√√√ |N i|
2|N same|

·

∑
i∈N same

∑
j∈Ni

(·1yi=yj
− 1yi ̸=yj

+ 1) · aij

|N same| · |N i|
+

1

|N same|

=

√√√√√√√ |N i|
2|N same|

· (

∑
i∈N same

snbri

|N same |︸ ︷︷ ︸
average nbr density

+

∑
i∈N same

∑
j∈Ni

aij

|N same| · |N i|︸ ︷︷ ︸
average affinity

) +
1

|N same|

(3)
Given a reasonable clustering model and |Ni| ≫ 1, we

let N be a subset of N same, due to the stochastic conver-
gence of TPRk provided by the vMF model, when |N | is
sufficiently large, we have:

TPRk ≈

√√√√ |N i|
2|N |

· (

∑
i∈N

snbri

|N |
+

∑
i∈N

(
1

|Ni|
∑

j∈Ni

aij
)

|N |
) +

1

|N |

=

√√√√ |N i|
2|N |

· (

∑
i∈N

snbri

|N |
+

∑
i∈N

aavgi

|N |
) +

1

|N |

(4)

As |N | ≫ 1, we further simplify the above equation by
dropping the last term, yielding:

TPRk ≈
( |N i|
2|N |

· ( 1

|N |
∑
i∈N

snbri +
1

|N |
∑
i∈N

aavgi )
)1/2

(5)

Note that the snbri and aavgi here are defined with respect
to Ni as shown in paper Eq. (6) and Eq. (8). So far, we
have proven Theorem 1 in the main paper.

A.3. Proof for Paper Theorem 2

By definition in Paper Eq.(6), we can express the difference
between the average density and the neighborhood average
density for a given sample i as follows:

savgi − snbri =

∑
j∈Ni

aij · 1yi ̸=yj

|N i|
(6)

Assuming cluster N has high purity with the majority class
being k, we express the average difference between the av-
erage density and the neighborhood average density in clus-
ter N as follows:

1

|N |
∑
i∈N

(savgi − snbri ) =

∑
i∈N

∑
j∈Ni

aij · 1yj ̸=yi=k

|N | · |N i|
(7)

Figure 1. This T-SNE visualization depicts class-specific TPR and
TNR scores for disjoint train and test classes in the iNaturalist-
2018 dataset. Each point represents a class, with color indicating
TPRk in the top row and TNRk in the bottom row. The results re-
veal a strong class-to-class neighbourhood similarity in both intra-
class compactness and inter-class separation. Despite a magnitude
offset between the scores of the train and test classes, this neigh-
bourhood similarity generalizes to previously unseen test classes
in the open world, as demonstrated by the consistent patterns be-
tween training and testing. Best viewed in color.

When Ni is sufficiently large, i.e., |Ni| → |N | ≫ 1, the
above equation becomes:

1

|N |
∑
i∈N

(savgi − snbri ) ≈

∑
j∈N

aij · 1yj ̸=yi=k

|N |

=
|N |k−

|N |

∑
j∈N

aij · 1yj ̸=yi=k

|N |k−

=
|N |k−

|N |

(
1−

∑
j∈N

(1− aij) · 1yj ̸=yi=k

|N |k−︸ ︷︷ ︸
same as TNRk in cluster N

)
(8)

By rearranging the above equation, we have:

TNRk ≈ 1− 1

|N |k−
·
∑
i∈N

(savgi − snbri )

= 1− |N |
|N |k−

·
(

1

|N |
∑
i∈N

savgi − 1

|N |
∑
i∈N

snbri

) (9)

Thus, we have proven Theorem 2 in the main paper.

B. Additional Visualizations / Ablation Studies
B.1. Further Justification for Using a GNN

To further justify the use of a GNN architecture, we explore
the intra-class and inter-class representation structures on



Figure 2. Intra-class and inter-class L2 distance distributions for Cars-196, CUB-200 and iNaturalist-2018 datasets in (a) SameDist, (b)
ShiftDist, and (c) DiffDist scenarios. In the ShiftDist scenario, we select three representative corruption types (Gaussian Noise, Motion
Blur, Snow) for visualization. Best viewed in color.

iNaturalist-2018 [26], one of the largest image recognition
benchmarks. We follow the open-world recognition setting
by training a DML embedding model on the training parti-
tion and extracting embeddings for both training and testing
partitions. For each class k, we compute its class centroid,
along with TPRk and TNRk, and subsequently generate a T-
SNE [25] plot using these class centroids. It’s worth noting
that in this T-SNE plot, each point represents a class instead
of a data sample. The visualization in Fig. 1 demonstrates
that proximate classes in the embedding space exhibit simi-
larities in their class-specific TPR and TNR scores, as high-
lighted by the colors. This observation aligns with prior
research [7, 11, 12], which has argued for the existence of
neighborhood similarity in representation structures. Mean-
while, this similarity pattern, despite a magnitude offset
between closed and open worlds, extends to unseen test
classes. These findings highlight the rich neighborhood in-
formation within the representation structures, supporting
our choice of a GNN architecture, known for its capabilities
in capturing the neighbourhood information in representa-
tion structures [2, 9, 22, 30, 31].

B.2. Further Justification for Using Both Densities

OpenGCN uses a single GAT encoder to jointly estimate
graph edge connectivity, as well as snbr and savg as two
node attributes to harness the mutual information among
these properties. In Section 4.3 of the paper, we present an
ablation study where predicting both densities in conjunc-
tion with the connectivity yields the best calibration per-
formance. Additionally, in alignment with the advantage
of capturing both class-specific TPR and TNR simultane-
ously, as mentioned in Paper Sec.3.2, we demonstrate that

simultaneously evaluating (savg, snbr) guarantees a higher
amount of entropy (denoted as H) compared to evaluating
snbr alone, as shown in the entropic inequality below:

H(savg, snbr) = H(snbr) + H(aavg|snbr) ≥ H(snbr) (10)

This increased information assists OpenGCN in better cap-
turing the representation structure for distance calibration.

B.3. Additional Experiment Details

Distance Distribution Visualizations for SameDist,
ShiftDist and DiffDist Scenarios In Fig. 2, we present vi-
sualizations of the intra-class and inter-class L2 distance
distributions for Dtrain, Dcal, and Dtest in the SameDist,
ShiftDist, and DiffDist calibration scenarios. For the Shift-
Dist scenario, we select three representative corruption
types: Gaussian noise, motion blur, and snow, for illustra-
tion. Notably, these corruptions are applied only to Dtest,
while the distance distributions for Dtrain and Dcal remain
the same as in the SameDist scenario. As depicted in the
figure, in the SameDist calibration scenario, Dcal and Dtest

exhibit similar distance distributions for each benchmark.
Meanwhile, as the embedding model is exclusively trained
on Dtrain, the distance distribution for Dtrain is more com-
pact and discriminative when compared to those for Dcal

and Dtest. In the ShiftDist scenario, there is a slight distri-
bution shift, with the magnitude varying depending on the
corruption type. In the DiffDist scenario, even more pro-
nounced distance distribution shifts are observed between
Dcal and Dtest, characterized by differing geometries and
locations of the overlapping area, highlighted in red.
Visualizations for TPR and TNR Predictions In Fig. 3,
we present visualizations of the TPR and TNR prediction



Figure 3. TPR and TNR prediction errors for various threshold
calibration methods in the SameDist calibration scenario. Values
closer to 0 indicate better accuracy. Best viewed in color.

Figure 4. Reliability plots for TPR and TNR predictions for var-
ious calibration methods in the SameDist calibration scenario. In
each plot, the x-axis is the ground truth TPR or TNR values, and
y-axis is the predicted TPR or TNR values. Curves that are closer
to y = x indicate better accuracy. Best viewed in color.

errors at each distance threshold for all three benchmarks.
Values closer to zero indicate higher accuracy in prediction.

Table 1. Evaluation results in the SameDist scenario for additional
baseline methods using the global error metric of MAEcomb. In
the gray-shaded methods, the notation “oracle” refers to using
the ground truth number of test classes as the cluster number for
estimating the pseudolabels to compute TPR and TNR. In the
lightcyan-shaded methods, an asterisk (∗) denotes that, when fit-
ting the calibration function for each baseline method, both Dtrain

and Dcal were used as the calibration dataset, as opposed to the
standard approach of using only Dcal. Methods with pink shading
are consistent with those presented in the main table.

Method Cars CUB iNat Avearge
K-Means (oracle) 1.93e-2 2.39e-2 7.08e-2 3.80e-2
Spectral (oracle) 9.55e-3 1.74e-2 4.82e-2 2.51e-2

OPTICS 1.91e-1 1.21e-1 1.47e-1 1.53e-1
FINCH 1.22e-1 1.81e-1 5.67e-2 1.20e-1

Platt Scaling∗ 1.68e-1 2.34e-1 9.74e-2 1.66e-1
Isotonic Regression∗ 1.68e-1 2.34e-1 9.74e-2 1.66e-1

Hi-LANDER∗ 5.66e-3 1.53e-2 1.05e-2 1.05e-2
Platt scaling 1.55e-2 3.59e-2 1.23e-2 2.12e-2

Isotonic regression 1.38e-2 3.61e-2 1.18e-2 2.06e-2
Hi-LANDER 1.29e-2 1.94e-2 2.14e-2 1.79e-2
OpenGCN 5.25e-3 6.50e-3 4.82e-3 5.52e-3

Additionally, in Fig. 4, we present reliability plots depict-
ing the relationship between ground truth TPR and TNR
(on the x-axis) and the predicted TPR and TNR values (on
the y-axis) for each method, where methods with curves
closer to y = x indicates better accuracy. As shown in the
figures, our openGAN method demonstrates the best over-
all calibration performance by accurately predicting TPR
and TNR metrics across various distance thresholds. How-
ever, it is worth noting that, similar to what was observed
in the pointwise evaluation results presented in Paper Table
(2), OpenGCN may not excel at every individual threshold,
despite its overall excellent performance. In cases where
a specific calibration distance threshold range is of inter-
est, further adjustments, such as reweighting the importance
of pairwise connectivities for pairs within a particular co-
sine distance range, can be applied to improve OpenGCN’s
point-wise calibration accuracy for a specific target.

Additional Baseline Methods In Table 1, we present addi-
tional baseline results to further validate the effectiveness of
our proposed OpenGCN method. First, we consider several
standard clustering baselines, marked in gray shade, includ-
ing K-Means [16], Spectral clustering [17], OPTICS [1],
and FINCH [21]. For K-Means and Spectral clustering, we
provide them with an unfair advantage by assuming knowl-
edge of the ground truth number of classes, denoted with
“(oracle)” in the table. This is based on the consideration
that obtaining this hyperparameter via cross-validation in
open-world scenarios is practically infeasible. Addition-
ally, we provide results for Platt Scaling [19], Isotonic Re-
gression [33] and Hi-LANDER [30], marked in lightcyan
shade, where both Dtrain and Dcal are used as the calibra-



tion dataset to fit the calibration function, marked with ∗ in
the table. This approach serves as a data-fair comparison
with our OpenGCN method, which utilizes both Dtrain and
Dcal during training. As demonstrated, among the gray-
shaded ones, the methods labeled as “oracle” outperform
those lacking knowledge of the ground truth number of test
classes. However, even with access to this information, they
still lag behind our OpenGCN method. Regarding the tra-
ditional calibration methods that utilize Dtrain + Dcal for
calibration, such as Platt Scaling∗ and Isotonic Regression∗,
we observed a significant increase in calibration error by an
order of magnitude. This can be ascribed to the fact that us-
ing Dtrain +Dcal as the calibration dataset further violates
the assumption of similar distance distribution between the
calibration and test datasets. For Hi-LANDER, we no-
ticed an improvement in calibration performance when in-
troducing Dcal, although it is still significantly worse than
our OpenGCN method. We hypothesize that this improve-
ment is because Hi-LANDER is also a GNN-based method,
which exhibits better generalization and adaptability com-
pared to traditional posthoc calibration methods.

B.4. OpenGCN Design Ablations

Unless otherwise stated, all experiments in this section are
conducted on the iNaturalist-2018 [26] dataset.
Joint Training vs Two-stage Training In Table 7 of the
paper, we compare the calibration performances between
OpenGCN pretrained on Dtrain (without finetuning) and
OpenGCN pretrained on Dtrain and finetuned on Dcal. For
more comprehensive comparison, we also provide an ad-
ditional experiment where OpenGCN is pretrained on the
joint set of Dtrain and Dcal, denoted as “JT” in Tab. 2. The
results in the table indicate mixed outcomes when introduc-
ing the additional open-world dataset Dcal in the pretraining
stage: while it improves calibration performance on Cars
and iNat, it worsens it on CUB. However, as suggested by
the results of “OpenGCN (PT+FT),” introducing Dcal via
finetuning the MLP head significantly reduced the global
calibration error by nearly one order of magnitude across
all three benchmarks. This results supports our choice of
two-stage training in adapting the calibration model from
the closed-world context to the open-world scenarios.

Table 2. Performance of OpenGCN in the SameDist scenario with
various pretraining and finetuning strategies, evaluated using the
global error metric MAEcomb. PT: pretraining with Dtrain, FT:
finetuning with Dcal, JT: joint-training with both Dtrain and Dcal.

Method Cars CUB iNat Avearge
OpenGCN (PT) 2.90e-2 2.52e-2 3.55e-2 2.99e-2
OpenGCN (JT) 1.80e-2 2.67e-2 2.08e-2 2.18e-2

OpenGCN (PT+FT) 5.25e-3 6.50e-3 4.82e-3 5.52e-3

Ablation of Loss for Connectivity Prediction We validate
our choice of the connectivity prediction loss, Lconn (defined

in Paper Eq.(11)), by replacing it with the standard Binary
Cross Entropy loss (BCE) while retaining the same auxil-
iary losses for density predictions. As depicted in Fig. 5,
implementing a balancing strategy in connectivity predic-
tion significantly improves calibration performance, espe-
cially in accurately predicting True Positive Rates (TPR) at
various distance thresholds. In our experiment, we observed
that without balancing, the connectivity distribution is dom-
inated by the negative pairs, leading to TPR prediction er-
rors as high as 70%. This is primarily because in visual
recognition, the number of classes can be very large, and
as OpenGCN randomly samples subsets to build fully con-
nected graphs, it generates a substantially higher number of
negative pairs compared to positive pairs. Without balanc-
ing, the model tends to struggle in learning and identifying
positive connectivities.

LBCE + λ · (Lsavg + Lsnbr) Lconn + λ · (Lsavg + Lsnbr)
MAEcomb 1.59e-1 4.82e-3

Figure 5. Comparison between Binary Cross Entropy Loss and
Our Proposed Lconn for Connectivity Prediction.

Robustness to Calibration Data Size In Fig. 6, we perform
an ablation study to evaluate how the size of the calibration
dataset, measured as the percentage of classes in Dcal used,
affects the calibration performance of the OpenGCN model.
We also provide a comparison with Isotonic Regression,
which is the best baseline method, under the same condi-
tions. The figure demonstrates that OpenGCN consistently
achieves lower calibration errors across all considered per-
centages of classes (5%, 10%, 20%, 50%, 100%). While a
reasonably large Dcal is preferred for OpenGCN to perform
well, it outperforms Isotonic Regression in all cases.

C. Additional Implementation Details
C.1. Implementation for Baseline Methods

Traditional calibration methods We consider several tra-
ditional posthoc calibration baselines including the Platt
scaling [19], Beta calibration [14] and Isotonic regression
[33], where the calibration methods learn a map from Dtrain

to Dval about the evaluation metrics at the same distance
threshold. The implementation is based on the net:cal cali-
bration framework [15]. Below, we detail the setup for each



Figure 6. Comparing OpenGCN’s Robustness to Calibration
Dataset Size with the Best Baseline Method (Isotonic Regression).
The x-axis represents the percentage of classes in Dcal used for fit-
ting the calibration functions.

baseline method:
• For Platt scaling [19], we aim to find the optimal scalar

parameters A,B of the y = (1 + eAx+B)−1 function
to map from {x: the performance metric of interest for
Dtrain} to {y: the performance metric of interest for
Dcal} at the same d, so as to calibrate the target perfor-
mance metric to distance threshold curve obtained from
Dtrain for better generalization. The optimal solution is
found with maximum likelihood estimate.

• Beta calibration [14] is a variant of Platt scaling that solve
the regression problem of y = 1

1+ez(x) , where z(x) is
a function parameterized by the Beta function. Isotonic
regression [33] fits a piecewise-constant non-decreasing
function from the training curve to the calibration curve.

• For isotonic regression, to prevent overfitting, , we split
the d-axis into n = 5 bins with equal mass.

• For histogram calibration [32], we use a histogram bin
number of 100 to ensure a sufficient grid resolution.

Pseudolabel-based calibration methods For pseudolabel-
based baselines, including DBSCAN [6] and HiLAN-
DER [30], we follow previous works [30, 31] and exclu-
sively train the calibration model on Dtrain and evaluate it
on Dtest using the pseudolabels decoded from the clustering
model. In the case of DBSCAN, we fine-tune the ϵ parame-
ter on Dcal through cross-validation. For Hi-LANDER, we
use its official codebase for both training and inference.

C.2. Details to OpenGCN Training and Inference

Input Embedding Preparation Same as [4, 28, 30, 31],
we utilize deep CNN features as GNN input to compute
the affinity between nearby nodes using the pairwise co-
sine similarity of the visual embeddings. For all datasets,
following [3], we use ImageNet [5]-pretrained ResNet50,
whose final softmax layers are replaced with one linear

layer, to train a recognition model for each benchmark. For
CUB and Cars, we use an embedding dimension of 128;
for iNaturalist-2018, we use an embedding dimension of
512. As we focus on calibration for open-world recogni-
tion, the training data for the visual embedding model fol-
lows the same open-set train-test split as calibration where
the classes in training and testing are disjoint to each other.
After training, we use the embedding model to extract em-
beddings, which are normalized to unit vectors following
the standard practice in visual recognition.
Sub-graph Construction During training, we build mini-
batches containing 256 samples. Specifically, in the pre-
training stage, we follow the data balancing strategy in [3,
18], where we divide Dtrain into batches, each contain-
ing 4 images per class. In the fine-tuning stage, we gen-
erate random batches from Dcal, to simulate the unknown
open-world test compositions. To ensure that the pairwise
distance distribution within each batch accurately reflects
the actual pairwise distance distribution, we construct fully
connected sub-graphs for each data batch during pretrain-
ing, finetuning and inference.
Inference for Calibration After acquiring TPR and TNR
estimates at each distance threshold from the GNN output,
we solve for d̂opt as a constrained optimization problem as
outlined in Paper Eq.(1), where the objective can be cus-
tomized for each use case. For global evaluation, we as-
sume that α is unknown and can assume any possible value.
Thus, we use the global error metric MAEcomb for evalua-
tion. For point-wise evaluation, we set a specific α value
(e.g., TPR = 80%) and use grid search across the global
distance threshold of [0, 2] with a grid size of 0.01 to solve
for dopt. Once d̂opt is acquired, we apply it to Dtest and use
the ground-truth labels to examine the calibration perfor-
mance using the pointwise metrics AETPR and AETNR.

D. FAQ
OpenGCN is less computationally efficient compared to

traditional post-hoc calibration methods, would
this make OpenGCN less preferable for application
deployment in practice? Though less computa-
tionally efficient compared to traditional inductive
post-hoc calibration methods such as Platt-scaling and
Isotonic regression, OpenGCN mitigates the need to
collect one calibration dataset for each application
data domain as in traditional calibration methods.
Such manual collection of calibration datasets with
human annotation is costly, time-consuming and often
prohibitively expensive in an open-world environment
where test distributions are highly dynamic and can
infinitely vary. However, with OpenGCN, one model
can be deployed and used without the need to collect
and annotate test-domain specific calibration datasets,
and the distance calibration is done transductively



over the incoming unlabeled test instances through
a GNN model inference. This renders OpenGCN
more suitable for deployment in practical applications,
particularly in environments that inherently embody
an open-world scenario.

Why are traditional calibration evaluation metrics such
as ECE not used in the evaluation? Our problem
setting - open-world threshold calibration, aims at
finding the distance threshold for achieving the desired
TPR and TNR performance values for deep metric
learning in open-world recognition. This is different
to closed-world confidence calibration, where the goal
is to align output softmax scores with the empirical
correctness of the model. As a result, traditional cali-
bration metrics like Expected Calibration Error (ECE),
which assess closed-world confidence calibration, do
not apply to our problem setting and are not used to
evaluate our proposed method and baselines.
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