
Low-Resource Vision Challenges for Foundation Models

Appendix

Circuit Diagram Classification Historic Map Retrieval Mechanical Drawing Retrieval
Top-1 (%) " Top-5 (%) " R@1 " R@5 " MnR # R@1 " R@5 " MnR #

Zero-Shot Transfer 19.3 45.1 28.1 62.1 10.1 13.2 26.3 83.1
Linear Probe 18.7 45.9 - - - - - -
LoRA [36]
LoRA 15.5 42.2 34.0 69.2 9.1 41.8 66.7 19.0
+ Generated Data for Data Scarcity 18.1 44.6 35.7 71.0 8.7 43.2 68.9 17.2
+ Tokenization for Fine-Grained 19.8 46.0 36.7 72.2 8.6 44.9 70.2 16.1
+ Attention for Specialized Domains 21.0 47.3 37.9 73.3 8.4 46.4 72.3 14.8
AdaptFormer [16]
AdaptFormer 19.8 45.5 30.3 62.6 13.4 54.3 76.6 13.8
+ Generated Data for Data Scarcity 21.3 47.0 33.7 64.7 11.5 57.2 79.1 12.0
+ Tokenization for Fine-Grained 22.7 48.1 34.9 66.4 10.8 58.8 81.2 11.4
+ Attention for Specialized Domains 24.1 49.3 36.4 68.0 9.8 60.0 82.5 10.2

Table 7. Combination of Our Baselines. Our generated data for data scarcity can mitigate the overfitting considerably for both LoRA and
AdaptFormer. The attention for specialized domains and tokenization for fine-grained further contribute to performance improvement by
helping the model focus on task-relevant regions and fine-grained details.

A. Combination of Our Baselines
Method. We adapt the foundation model ImageBind by an
existing transfer learning method, and add our proposed base-
lines for the three challenges defined in Section 2. We keep
the foundation model parameters frozen and only update the
parameters introduced by the transfer learning method and
our baselines. Our baselines work independently of each
other, focusing on different areas of the foundation model:
input, tokenization, and attention. Thus, they can be easily
combined. Specifically, our generated data for data scarcity
produce more samples for model learning, while our tok-
enization for fine-grained better encodes the input image
patches into feature tokens. As the transfer learning method
learns additional parameters inside the foundation model
for the low-resource tasks, our attention for specialized do-
mains is inserted into one layer to help the model focus on
task-relevant regions.
Results. In Table 7, we ablate the effect of our three pro-
posed baselines (in Section 3), i.e., generated data for data
scarcity, tokenization for fine-grained and attention for spe-
cialized domains. We consider both LoRA [36] and Adapt-
Former [16] as the additional transfer learning parameters.
By adding our generated data, the overfitting issue from lim-
ited training data can be alleviated considerably. For instance,
this gives +2.6% Top-1 accuracy on circuit diagram classifi-
cation with LoRA and 3.4% in R@1 on historic maps with
AdaptFormer. This is because the label-breaking images
enlarge the data space to help the representation learning.
With our tokenization for fine-grained, the performance is
further improved by +1.7% Top-1 with LoRA and +1.4%
with AdaptFormer on circuit diagram classification. This

demonstrates the benefit of processing smaller regions com-
pared to the original kernel so that the fine-grained details
can be discovered. Adding attention for specialized domains
to combat the out-of-distribution challenge delivers a further
+1.2% Top-1 with LoRA and 1.4% with Adaptformer on
circuit classification. Historic map retrieval and mechanical
drawing retrieval obtain similar improvements. Our base-
lines are effective additions to both LoRA and AdaptFormer,
increasing the results on circuit classification by 5.5% Top-1
and 4.3% respectively, with similar improvements for his-
toric map retrieval and mechanical drawing retrieval.

B. Challenge Results on All Tasks
In Section 5.2 in the main paper, we demonstrate the chal-
lenges of low-resource vision for existing solutions on circuit
diagram classification. Here, we present the same experi-
ments on all three low-resource tasks including historic map
and mechanical drawing retrieval.
Challenge I: Data Scarcity. In Table 8, we show the chal-
lenge of low-resource vision for existing solutions to data
scarcity. Existing approaches are effective for mechanical
drawing retrieval but give little improvement over zero-shot
transfer on circuit diagram classification and historic map
retrieval. Our generated data for data scarcity benefits all
three tasks, giving the most improvement on historic map
retrieval and mechanical drawing retrieval. This is because
the domain gap between natural images and the data of these
two tasks is slightly smaller making the label-breaking aug-
mentations look more realistic (we show visualizations in
Section E). Our generated data for data scarcity thus in-
creases the data diversity more effectively for historic map
and mechanical drawing retrieval. While our combination



Circuit Diagram Classification Historic Map Retrieval Mechanical Drawing Retrieval
Top-1 (%) " Top-5 (%) " R@1 " R@5 " MnR # R@1 " R@5 " MnR #

Zero-Shot Transfer 19.3 45.1 28.1 62.1 10.1 13.2 26.3 83.1
Simple Transformations
Random Cropping + Random Flipping 19.8 45.3 30.3 62.6 13.4 54.3 76.6 13.8
Mixup [82] 20.8 46.0 28.4 55.7 15.2 50.5 72.9 14.9
CutMix [81] 20.0 45.5 28.4 62.6 12.5 54.9 78.1 13.1
Random Erasing [87] 20.8 46.2 23.5 49.6 17.1 54.6 78.0 13.2
Generative Models
DA-Fusion [65] 19.6 45.1 29.8 61.3 14.7 54.5 77.6 13.5
SyntheticData [31] 20.8 46.0 30.4 62.9 12.6 55.9 78.9 13.0
Our Baselines

Generated Data for Data Scarcity 21.3 46.9 33.7 64.7 11.5 57.2 79.1 12.0
Combination of Baselines 24.1 49.3 36.4 68.0 9.8 60.0 82.5 10.2

Table 8. Challenge I: Data Scarcity. We mark the best in red and the second in blue. Simple transformations do little to improve the
diversity of training data. We obtain the best data diversity and thus the best baseline performance on all the three low-resource tasks with
our baselines which leverage both similar and dissimilar images produced by generative models.

Circuit Diagram Classification Historic Map Retrieval Mechanical Drawing Retrieval
Top-1 (%) " Top-5 (%) " R@1 " R@5 " MnR # R@1 " R@5 " MnR #

Zero-Shot Transfer 19.3 45.1 28.1 62.1 10.1 13.2 26.3 83.1
Fine-Grained
Adaptive-FGSBIR [14] 16.7 43.2 5.3 12.6 55.1 5.6 17.1 70.2
PLEor [71] 17.1 44.1 4.6 11.8 56.5 5.0 16.9 71.3
PDiscoNet [66] 16.2 43.5 5.8 13.0 53.2 5.4 17.2 69.8
Our Baselines

Tokenization for Fine-Grained 20.9 45.5 32.1 64.0 12.3 55.9 78.4 12.7
Combination of Baselines 24.1 49.3 36.4 68.0 9.8 60.0 82.5 10.2

Table 9. Challenge II: Fine-Grained. We mark the best in red and the second in blue. Fine-grained recognition methods need thousands of
images for model learning, making them unsuited to low-resource tasks. Our tokenization baseline better utilizes the limited training data
and makes improvements on all the three low-resource tasks. However, there is much potential for further improvements.

Circuit Diagram Classification Historic Map Retrieval Mechanical Drawing Retrieval
Top-1 (%) " Top-5 (%) " R@1 " R@5 " MnR # R@1 " R@5 " MnR # GFLOPs Params (M)

Zero-Shot Transfer 19.3 45.1 28.1 62.1 10.1 13.2 26.3 83.1 224.6 63.3
Transfer Learning

TOAST [61] 16.4 43.3 4.2 11.5 52.4 4.4 16.3 69.0 476.2 73.8
CLIP-Adapter [25] 16.3 42.9 3.2 15.9 42.1 7.7 23.2 59.5 224.8 64.2
IA3 [52] 18.2 45.4 29.1 51.3 19.5 52.0 76.7 12.7 224.6 63.6
VPT [41] 19.4 45.2 36.2 61.6 13.3 47.7 72.4 13.5 233.3 63.8
LoRA w/ Our Baselines

LoRA [36] 15.5 42.2 34.0 69.2 9.1 41.8 66.7 19.0 224.7 63.7
+ Attention for Specialized Domains 16.9 44.5 35.1 70.9 8.8 43.0 69.2 17.8 224.7 63.7
+ Combination of Baselines 21.0 47.3 37.9 73.3 8.4 46.4 72.3 14.8 233.7 63.7
AdaptFormer w/ Our Baselines

AdaptFormer [16] 19.8 45.5 30.3 62.6 13.4 54.3 76.6 13.8 224.6 63.4
+ Attention for Specialized Domains 20.6 47.0 31.9 64.2 12.1 56.4 78.3 12.8 224.6 63.4
+ Combination of Baselines 24.1 49.3 36.4 68.0 9.8 60.0 82.5 10.2 233.6 63.4

Table 10. Challenge III: Specialized Domain. We mark the best in red and the second in blue. State-of-the-art transfer learning methods
focus on common natural images similar to the training data of foundation models, therefore they struggle with low-resource tasks. As a
result, our simple baselines can easily lead to improvements on all the three low-resource tasks.

of baselines does deliver improvements on all three tasks,
they are still far from solved, uncovering the difficulties of
low-resource vision.
Challenge II: Fine-Grained. We investigate how well re-
cent state-of-the-art fine-grained methods [14, 66, 71] can
tackle the challenge of low-resource vision in Table 9. While
existing fine-grained methods assume there is sufficient data
for model learning, they suffer from severe overfitting. This
is demonstrated best on historic map and mechanical draw-

ing retrieval where the results of existing fine-grained meth-
ods are much lower than zero-shot transfer. In contrast, our
baseline for fine-grained attends to fine-grained differences
with only a few additional parameters so that the perfor-
mance can be improved on all three tasks.
Challenge III: Specialized Domain. We consider several
state-of-the-art transfer learning methods [16, 25, 36, 41,
52, 61] for adaptation to the specialized domains of our low-
resource vision tasks. We show results in Table 10. Since our



Circuit Diagram Classification Historic Map Retrieval Mechanical Drawing Retrieval
Label-Preserving Label-Breaking Top-1 (%) " Top-5 (%) " R@1 " R@5 " MnR # R@1 " R@5 " MnR #

19.8 45.5 30.3 62.6 13.4 54.3 76.6 13.8
X 20.8 46.1 32.1 63.8 12.1 56.4 78.0 12.8

X 20.4 46.0 32.4 63.5 12.5 55.7 77.5 13.0
X X 21.3 46.9 33.7 64.7 11.5 57.2 79.1 12.0

Table 11. Ablation of Generated Data. Both label-preserving and label-breaking generated images add more data points into the training
data for model learning. Thus, both types of augmentation contribute to the reduction in overfitting.
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Figure 7. Effect of Sub-Kernel Size in
tokenization for fine-grained. A medium
sub-kernel gives a good trade-off between
meaningful regions and fine-grained de-
tails.
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Figure 8. Position of Attention for special-
ized domains. The attention is reasonably
robust to the choice of layer, although the
middle layers reach a good trade-off between
low- and high-level features.
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(c) Number of Attention Maps
Figure 9. Number of Attention Maps for
specialized domains. Learning anywhere
from 8 to 14 attention maps allows the
model to specialize to the domain while
avoiding overfitting
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Figure 10. Diffusion Model Thresholds have limited influence on baseline I for synthesizing data.

baselines can be used in combination with any transfer learn-
ing method we plug them into two such methods: LoRA [36]
and AdaptFormer [16]. While AdaptFormer performs better
than other transfer learning methods on circuit diagram clas-
sification and mechanical drawing retrieval, LoRA is favor-
able on historic map retrieval. With our baselines, the results
are improved further without much computation burden or
parameters added. However, there is still no single model
that always surpasses the others on all three low-resource
tasks. Thus, this is only an initial step towards solving the
challenges of low-resource vision.

C. Ablations and Hyperparameter Analysis
C.1. Generated Data for Data Scarcity
Effect of Label-Preserving and Label-Breaking Images.
Our generated data for data scarcity in Section 3.1 use
two types of augmentations for model learning, i.e., label-

preserving and label-breaking. While we adopt a super-
vised learning objective for label-preserving images with
groundtruth labels, a self-supervised contrastive learning
objective is applied to label-breaking images. In Table 11,
we ablate their effect on our low-resource benchmark. Both
types of images improve the diversity of training data. Thus,
they reduce the overfitting and improve the model adaptation
to our low-resource settings considerably. We provide visu-
alizations of these two types of augmentations in Section E.
Diffusion Model Threshold. Our generated data baseline
is insensitive to the selection of � and ⌧ thresholds and im-
proves over ImageBind zero-shot transfer for all thresholds
tested in Figure 10.

C.2. Tokenization for Fine-Grained
Effect of Sub-Kernel Size. In Section 3.2, we introduce
our tokenization for fine-grained baseline, where the original
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Figure 11. Class Distribution of Circuit Diagrams. While power
supply, LED, amplifier and sensor have the most samples, it is hard
to collect many circuit diagrams for most classes.

kernel for linear projection is divided into sub-kernels for
encoding the input image patches. As the sub-kernels have
smaller receptive fields, more simple patterns are encoded
from the smaller input image patches. Here, we ablate the
effect of sub-kernel size in Figure 7 on circuit diagram classi-
fication. While small sub-kernel sizes cannot cover meaning-
ful regions and therefore only extract the texture information,
large sub-kernel sizes focus more on global information than
fine-grained details. Thus, adopting a medium size, i.e., 7⇥7,
delivers the best performance.
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Figure 12. Country Distribution of Historic Maps. While we
find Europe and United States have the most historic maps online,
other regions have much fewer maps available.

C.3. Attention for Specialized Domains

In Section 3.3, we introduce our attention for specialized
domains. Here, we discuss the effect of its position as well
as the number of maps.
Position of Attention for Specialized Domains. We add
our attention for specialized domains into only one layer
to avoid introducing many additional parameters, which
can result in overfitting. In Figure 8 we measure the effect
of adding our attention to different transformer layers in
circuit classification. As shallow layers focus on low-level,
simple patterns, deep layers extract semantic features. The
middle layers reach a trade-off between low- and high-level
features. Nonetheless, our attention for specialized domains
is reasonably robust to the choice of layer.
Number of Attention Maps. Using attention for specialized



Circuit Diagram Classification Historic Map Retrieval Mechanical Drawing Retrieval
Figure 13. Attention Maps from Vision Foundation Model. We show the highest activation on each region across all the attention maps of
the middle transformer block. Only a few regions are activated for the three images. This means that the vision foundation model fails to
understand the interaction between different image regions. Thus, vision foundation models need proper adaptation for low-resource tasks.

Circuit Diagram
Classification

Historic Map
Retrieval

Mechanical Drawing
Retrieval

Figure 14. Attention for Specialized Domains. While the attention maps for circuit diagram classification and mechanical drawing retrieval
focus more on vertical and horizontal regions, those for historic maps highlight different local regions and tend to have much larger ‘receptive
fields’ than the other two tasks.

domains in the middle layer, we further study the effect of the
number of attention maps C on circuit diagram classification
in Figure 9. Using as few as two attention maps doesn’t allow
the model to fully specialize to the low-resource domain,
while with 20 maps, the model overfits to the training data
and cannot generalize to the variations seen at inference.
Learning 10 maps reaches the best trade-off, although the
model is beneficial with any choice between 8 and 14.

D. Low-Resource Image Transfer Evaluation
In Section 2 in the main paper, we introduce our Low-
Resource Image Transfer Evaluation benchmark. Here, we
provide more details about our three low-resource tasks.
Task I: Circuit Diagram Classification. We collect 297
circuit diagrams from [19], 175 from Gadgetronicx [1] and

860 from Circuit Digest [2]. This results in a total of 1,332
circuit diagrams. We divide them into 32 classes and present
the class distribution in Figure 11. The power supply con-
tains 223 samples, which is the most among all classes. We
also find many samples for LED with 163 diagrams, ampli-
fier with 158, and sensor with 156. However, we also find it
hard to collect circuit diagrams for many classes, e.g., relay,
jammer, intercom, and signal fader. For instance, we can
only get 7 samples of relays and 6 depicting jammers.

Task II: Historic Map Retrieval. All the historic maps
come from OLD MAPS ONLINE [6] and all the satellite
maps are from Google Map [4]. We collect 651 pairs of his-
toric maps and today’s satellite images from 29 countries and
show the distribution across countries in Figure 12. United
States and Europe have the most historic maps online. For
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Figure 15. Confusion Matrix reveals our baselines achieve stronger performance on classes with prominent patterns.

example, we obtain 194 images for the United States. In
contrast, collecting maps from other regions is more difficult.
For instance, we can only find 2 images for Australia and 4
images for Jersey.
Task III: Mechanical Drawing Retrieval. We collect 565
pairs of mechanical drawings and 3D rendered images from
TraceParts [7] and the other 589 pairs come from Grab-
CAD [5]. These cover various specialized 3D components
including brackets, nuts, gears, hinges, and clamps.

E. Visualizations
Attention Maps from Vision Foundation Model on low-
resource images. We visualize the attention maps from vi-
sion foundation models without our low-resource baselines
in Figure 13. This uses the ImageBind model adapted to our
low-resource tasks with AdaptFormer. We show the highest
activation on each region across all the attention maps of the
middle transformer block. We can observe from the figure
that only a few regions are activated for the three images.
This means that the vision foundation model fails to under-
stand the interaction between different image regions which
is key for these specialized domains. As a result, the model
cannot perform well on low-resource tasks. Thus, proper

adaptation is needed for vision foundation models.
Attention for Specialized Domains. In Section 3.3, we
introduced our attention for specialized domains. Here, we
visualize these learned attentions in Figure 14. Each do-
main tends to have a particular attention pattern with the
different attention maps having different sizes of ‘receptive
field’ so that various levels of features can be encoded. We
observe that the attention for circuit diagram classification
and mechanical drawing retrieval focuses more on vertical
and horizontal regions. This is because these images have
a lot of straight lines and right angles, which contain useful
information. The attention maps for historic map retrieval
highlight different local regions and tend to have much larger
‘receptive fields’ than the other two tasks.
Confusion Matrix. We provide a confusion matrix in Fig-
ure 15. Indeed, our baselines recognize components with
prominent patterns more clearly, achieving stronger perfor-
mance on dice, infrared sensor, and relay. It confuses classes
with shared components, e.g., audio mixer and wave genera-
tor.
Label-Preserving and Label-Breaking Images. In Sec-
tion 3.1, we introduce our generated data for data scarcity.
Here, we visualize the label-preserving and label-breaking
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Figure 16. Generated Data of Circuit Diagrams. We show the generated data of three circuit diagram images with different colors. In the
left column, we present the original images and their label-preserving augmentations. In the other columns, we show the label-breaking
images and the positive pairs for contrastive learning. For the images in each color box, there are minor differences between each other (zoom
in to observe the differences), while the label-breaking images are totally different from their original images and have large variations.

images in Figure 16, Figure 17, Figure 18 and Figure 19.
For label-preserving augmentations, there are only minor
differences from their original images (zoom in to observe
the differences). Thus, we use the original labels for them in
model learning. However, for label-breaking augmentations,
they are totally different from the original images. Therefore,
we apply a self-supervised contrastive learning objective to
learn from such data. We also present the augmentations for
label-breaking images, which construct the positive pairs in

contrastive learning. Note that each box in the figures denote
a positive pair.
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Figure 17. Generated Data of Historic Maps. We show the generated data of three historic maps with different colors. In the left column,
we present the original historic map with their label-preserving augmentations. In the other columns, we show the label-breaking images as
well as the positive pairs for contrastive learning. For the images in each color box, there are minor differences between each other (zoom in
to observe the differences), while the label-breaking images are totally different from their original images and have large variations.
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Figure 18. Generated Data of 3D Rendered Images on Mechanical Drawing Retrieval. We show the generated data of three 3D rendered
images with different colors. In the left column, we present the original 3D rendered images with their label-preserving augmentations. In
the other columns, we show the label-breaking images as well as the positive pairs for contrastive learning. For the images in each color box,
there are minor differences between each other (zoom in to observe the differences), while the label-breaking images are totally different
from their original images and have large variations.
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Figure 19. Generated Data of Mechanical Drawings. We show the generated data of three mechanical drawings with different colors. In
the left column, we present the original mechanical drawings with their label-preserving augmentations. In the other columns, we show the
label-breaking images as well as the positive pairs for contrastive learning. For the images in each color box, there are minor differences
between each other (zoom in to observe the differences), while the label-breaking images are totally different from their original images and
have large variations.
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