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Supplementary Material

1. Appendix

1.1. Model Architecture

MAPSeg is implemented using PyTorch. Detailed configu-
rations of model and training can be found below.

3D Multi-Scale Masked Autoencoder (MAE). We imple-
ment the 3D MAE using 3D ResNet Blocks [10, 24] in-
stead of Vision Transformers, different from the previous
study [11], due to the constraint of GPU memory. The en-
coder consists of eight 3D ResNet Blocks. The 3D ResNet
Block is depicted in Suppl.Fig.1a. Following the previous
study [11], we adopt an asymmetric design by employing a
lightweight decoder (Suppl.Tab.1).

3D Global-Local Collaboration (GLC). The segmenta-
tion backbone (Suppl.Tab.1) consists of the pretrained en-
coder and a segmentation decoder that is adapted from
DeepLabV3 [4]. In the decoding path, we take advantage
of the Atrous Spatial Pyramid Pooling (ASPP), which em-
ploys dilated convolution at multiple scales and provides
access to larger FOV (Suppl.Fig.1b). After feature extrac-
tion, the GLC module fuses the local and global features
and forms a latent representation with a dimension of 1024,
which is then fed into the ASPP layer. During training, each
local sub-volume with size of 96×96×96 is randomly sam-
pled from global scan. During inference, the final output is
formed by sliding window with stride of 80 across entire
volumetric scan.
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Suppl.Fig. 1. Illustrations of 3D ResNet Block and 3D Atrous
Spatial Pyramid Pooling (ASPP) layer.

Encoder
Layer Name Input Size Output Size Architecture

enc res1 (1,96,96,96) (512,24,24,24)

 4×4×4, 512
3×3×3, 512
3×3×3, 512

×1

enc res2.x (512,24,24,24) (512,24,24,24)

 3×3×3, 512
3×3×3, 512
3×3×3, 512

×7

MAE Decoder
Layer name Input size Output size Architecture
trans conv1 (512,24,24,24) (32,96,96,96) 4×4×4, 32, stride 4

dec res1 (32,96,96,96) (16,96,96,96)

 3×3×3, 16
3×3×3, 16
3×3×3, 16

×1

final recon (16,96,96,96) (1,96,96,96) 3×3×3, 1, stride 1

Segmentation Decoder
Layer name Input size Output size Architecture

ASPP (1024,24,24,24) (512,24,24,24) Suppl. Fig.1b
trans conv2 (512,24,24,24) (64,96,96,96) 4×4×4, 64, stride 4

seg head (64,96,96,96) (cls num,96,96,96)
[

3×3×3, 64
1×1×1, cls num

]
×1

Suppl.Tab. 1. Architectures of different components of MAPSeg.
Building blocks ([kernal size, output channels]) are shown in
brackets, with the number of blocks stacked. Downsampling is
performed by the first block of enc res1 with a stride of 4.

1.2. Training Recipe

MAE Pretraining. For the MAE Pretraining, we follow the
training configurations listed in Suppl.Tab.2. Each mini-
batch contains a pair of randomly sampled local patch x
and downsampled global scan X . The masking patch in
Suppl.Tab.2 only applies to x and is always half-sized for
X because of the larger FOV. For example, in the ablation
study of masking patch size, a masking patch of 16 to x
indicates a masking patch of 8 to X . We implement the
augmentation using TorchIO [21]. During the MAE stage,
we employ random 3D affine transformation, with isotropic
scaling 75-150% and rotation [-40°, 40°].
Centralized UDA. For the centralized UDA on brain MRI
segmentation tasks, detailed training configuration can be
found in Suppl.Tab.3. Similarly, each mini-batch contains
a pair of x and X from the source domain and another pair
from the target domain (four 96×96×96 patches). During
warmup epochs, the model is only trained on source do-
main. We utilize Score to select the best model and the
patience is set as 50 epochs. For the target domain, we de-
sign a similar random 3D affine transformation, with scaling
70-130% and rotation [-30°, 30°]. A stronger augmentation



config value
masking patch 8×8×8
masking ratio 70%

optimizer AdamW [19]
learning rate 2e−4

weight decay 0.05
optim. momentum β1, β2 = 0.9, 0.95

lr scheduler cosine annealing [18]
Tmax=20, min lr=1e−6

total epochs 300
annealing epochs last 100

batch size 4
iters/epoch 500
aug. prob. 0.35

augmentation random affine

Suppl.Tab. 2. MAE Pretraining Configurations

config value
masking patch 8×8×8
masking ratio 70%

optimizer AdamW [19]
learning rate 1e−4

weight decay 0.01
optim. momentum β1, β2 = 0.9, 0.999

lr scheduler cosine annealing warm restart [18]
T0=10, Tmult=2, min lr=1e−8

total epochs 100
warmup epochs first 10

annealing epochs all
early stop 50
batch size 1
iters/epoch 100
aug. prob. 0.35

source aug.
random affine

random bias field
random gamma trans.

target aug. random affine

Suppl.Tab. 3. Centralized UDA configurations for brain MRI seg-
mentation.

strategy is applied to the source domain, consisting of ran-
dom affine (scaling 70-140% and rotation [-30°, 30°]), ran-
dom bias field [22, 23], and random gamma transformation
(γ ∈ [e−0.4, e0.4]). For the centralized UDA on public car-
diac CT→MRI segmentation, we use the same configura-
tion except for training epochs of 150 and warmup epochs
of 50. For MRI→CT cardiac segmentation, we use a less
aggressive augmentation strategy because MRI is noisier
than CT. We set the scaling ratio to 85-115% and rotation to
[-15°, 15°] for both source and target domains, and exclude
random bias field and gamma transformation. The warmup
epoch is set as 70.
Federated UDA. For the federated UDA tasks, we follow
the procedure detailed in Algorithm 1. We initialize the en-
coder of the global model fϕ with the encoder pretrained on
the large-scale data mentioned in Sec.4.3. We set the global
FL round R = 100. We set both the server and client update
steps to 1 epoch with batch size of 1. Training configuration
inherits mostly from that of the centralized UDA, except a
global cosine annealing learning rate schedule is adopted to
decay the learning rate from 1e−4 to 1e−6 over the course
of the FL rounds.
Test-Time UDA. For the test-time UDA tasks, we follow

Algorithm 1 Federated MAPSeg (Fed-MAPSeg)

Require: Source domain dataset DS = {(xs, ys)} and tar-
get domain datasets Dk

T = {(xk
t )} for each client k,

pretrained global model fϕ, number of FL round R,
number of server update steps Ts, number of client up-
date steps Tt

1: for r = 1, 2, · · · , R do
2: Initialize server EMA teacher model: θ ← ϕ
3: for t = 1, 2, ·, Ts do
4: Sample patches (xs, ys) from DS and generate

downsampled global volume and masked inputs
Xs, XM

s , xM
s

5: Update fϕ on server by minimizing Ls (Eq.9)
6: Update server EMA teacher model parameter θ

with (Eq.3)
7: end for
8: Server broadcast θ to clients
9: for each client k in parallel do

10: ϕk ← θ, θk ← θ
11: for t = 1, 2, · · · , Tt do
12: Sample patches xk

t from Dk
T and generate

downsampled global volume and masked inputs
Xk

t , (Xk
t )

M , (xk
s)

M

13: Generate pseudolabels for unmasked inputs xk
t

and Xk
t using the teacher model fθk : fθk(x

k
t )

and fθk(X
k
t )

14: Update fϕk
by minimizing Lu (Eq.10)

15: Update client EMA teacher model parameter
with (Eq.3)

16: end for
17: Upload θk to server
18: end for
19: The server aggregates θk from clients:

θ̄ ←
∑
k

|Dk
T |∑

k |Dk
T |

θk

20: Update server model parameters ϕ← θ̄
21: end for

the same configuration as listed in Suppl.Tab.3. The differ-
ence is that the model can only access source domain data
(image and label) during warmup epochs and can only ac-
cess target domain data (image only) after that, while cen-
tralized UDA has synchronous access to both source and
target domain data throughout the whole training process.

1.3. Implementation of Comparing Methods

For other comparing methods in centralized UDA, we adapt
their official implementations. For DAFormer, HRDA, and
MIC, we modify the ground truth labels to make them
denser, as we observe that the original sparse annotations



cause trouble for those methods. Specifically, we crop the
scans to include only brain regions. In addition to having
foreground classes of 7 subcortical regions (which account
for approximately 2% of overall voxels), we assign another
foreground class to the remaining brain regions. Therefore,
there are 9 classes for DAFormer, HRDA, and MIC, 8 fore-
ground and 1 background classes. This modification signif-
icantly improves the results. For the FL baselines FAT [20]
and DualAdapt [25], since there is no public official imple-
mentation available, we implement both methods follow-
ing the description in the original papers and finetune thor-
oughly. We use the same network backbone initialized with
the same pretrained encoder and training configuration (FL
rounds, global learning rate schedule, local update steps,
batch size, etc.) as Fed-MAPSeg whenever possible.

1.4. Dataset Description

We include a diverse collection of 2,421 brain MRI scans
from several international projects, each with its unique
focus on infant brain development. From the Develop-
ing Human Connectome Project (dHCP) V1.0.2 data re-
lease1 [8] in the UK, we incorporate 983 scans (426 T1-
weighted, T1w), acquired shortly after birth. The Baby
Connectome Project (BCP) [12] in the USA contributes 892
scans (519 T1w), featuring longitudinal data. Addition-
ally, from the Environmental Influences on Child Health
Outcomes (ECHO) project, also in the USA, we have 433
scans (218 T1w) from newborn infants. The ‘Maternal
Adversity, Inflammation, and Neurodevelopment’ (Healthy
Minds) project from Brazil, conducted at Hospital São
Paulo - Federal University of São Paulo (UNIFESP), adds
103 T2-weighted (T2w) MRI scans, acquired shortly af-
ter birth and available in the National Institute of Mental
Health Data Archive (collection ID 3811). Lastly, the Mel-
bourne Children’s Regional Infant Brain (M-CRIB) project
[1] from Australia provides 10 additional T2w scans. All
studies involved have received Institutional Review Board
(IRB) approvals. MAPSeg takes normalized scans as in-
puts. During training, the intensity of each volumetric scan
is clipped at a percentile randomly drawn from a uniform
distribution U(99, 100), then normalized to 0-1. During in-
ference, the intensity clip is fixed at 99.5%. The top 0.5%
intensity is clipped as 1 to cope with outlier pixels (hyper-
intensities) that are usual in MRI.

1.5. Results of MRI→ CT cardiac segmentation

The performance of MAPSeg on the public cardiac
MRI→CT segmentation is reported in Suppl.Tab.4. Simi-
larly, we use the same dataset partition as previous studies.
MAPSeg consistently outperforms other baseline methods,
although the performance gap is smaller than CT→MRI.

1https : / / www . developingconnectome . org / data -
release/data-release-user-guide/

Suppl.Tab. 4. Results of cardiact MRI→CT segmentation.

Cardiac CT→MRI segmentation

Method
Dice(%) ↑

AA LAC LVC MYO Avg
PnP-AdaNet[7] 74.0 68.9 61.9 50.8 63.9

SIFA-V1[2] 81.1 76.4 75.7 58.7 73.0
SIFA-V2[3] 81.3 79.5 73.8 61.6 74.1

DAFormer[13] 85.5 88.2 74.5 60.2 77.1
MPSCL[17] 90.3 87.1 86.5 72.5 84.1

MA-UDA[14] 90.8 88.7 77.6 67.4 81.1
SE-ASA[9] 83.8 85.2 82.9 71.7 80.9

FSUDA-V1[15] 86.4 86.9 84.8 81.8 85.0
PUFT[6] 88.1 88.5 87.5 74.1 84.6

SDUDA[5] 87.9 88.1 88.4 78.7 85.8
FSUDA-V2[16] 88.2 88.9 85.2 82.2 86.1
MAPSeg (Ours) 93.3 87.3 89.1 78.9 87.1

Suppl.Fig. 2. Downstream cross-sequence centralized UDA per-
formance vs. MAE pretraining iterations.

1.6. Additional Analysis

Influence of MAE Pretraining on UDA Results. We con-
duct an additional analysis to investigate the relationship
between MAE training steps and downstream UDA perfor-
mance. The experiments are conducted on cross-sequence
brain MRI segmentation (Suppl.Fig.2). We observe signif-
icant improvement in UDA performance at the first 75,000
MAE training steps, which then gradually saturates. We
choose 150,000 MAE training steps as the benefits of fur-
ther training diminish.

Sensitivity to hyperparameters. We conduct additional
experiments on cross-sequence brain MRI segmentation to
investigate the sensitivity of MAPSeg to hyperparameters
(Suppl.Tab.5). Specifically, we investigate the step size (α)
of EMA update as well as weights of loss terms (γ and δ).
When one parameter is varying, other parameters remain
unchanged. We notice that the performance is relatively sta-
ble across a wide range of hyperparameters. Since we did
not tune the hyperparameters extensively during develop-
ment, the default parameters may not represent the optimal
setting.

https://www.developingconnectome.org/data-release/data-release-user-guide/
https://www.developingconnectome.org/data-release/data-release-user-guide/


Suppl.Tab. 5. Influence of hyperparameters on results, bold indi-
cates used parameters.

α 0.999/0.9999 0.99/0.999 0.99 0.999 0.9999
Dice (%) 77.73 74.00 74.26 74.74 78.06

γ 0.05 0.5 0.1 0.01 0.005
Dice (%) 77.73 77.22 77.97 77.98 77.99

δ 0.025 0.25 0.1 0.01 0.0025
Dice (%) 77.73 76.74 78.08 77.82 78.57

Local Patch Global Scan
Masked Input Recon Original Image Masked Input Recon Original Image

Suppl.Fig. 3. A randomly sampled T2w scan in cross-sequence
task. MAE parameters is same as in Suppl.Tab.2

1.7. Visualization

MAE. Some visualizations of MAE results (axial slices) are
provided in Suppl.Fig.3.

UDA Results. We provide qualitative comparisons of dif-
ferent methods on cross-sequence (X-Seq), cross-site (X-
Site), and cross-age (X-Age) brain MRI segmentation tasks
in Suppl.Fig.4. MAPSeg consistently provides accurate
segmentation in different UDA settings. It is worth noting
that, despite the second best performance in cross-sequence,
DAR-UNet tends to oversegment on cross-site and cross-
age tasks, partially because of translation errors. On cross-
site and cross-age tasks, despite DAFormer, HRDA, and
MIC generate reasonably good segmentation inside the sub-
cortical regions, they exhibit extensive false positives out-
side the subcortical regions, leading to suboptimal overall
Dice score.
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