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Supplementary Material

In the following, we provide additional details about the
proposed area matching method, MESA. Sec. 7 describes
specific implementation details of our method. Sec. 8 an-
alyzes the computation complexities of main components
in MESA. Sec. 9 gives more insights and ablation studies,
that motivates our design. Sec. 10 provides visualizations
of area matching and point matching results. Sec. 11 states
the limitation of MESA and our future work.

7. Implementation Details

In this section, we provide sufficient details about the im-
plementation of MESA for reproduction, including detailed
operations in Graph Completion (Sec. 7.1), training details
about our Learning Area Similarity (Sec. 7.2) and complete
parameter settings in Graphical Area Matching (Sec. 7.3).

7.1. Graph Completion

The detailed algorithm for our graph completion is depicted
in Algorithm 1, which takes initial AG (Gini) as input and
outputs the final AG (G) with scale hierarchy. Additionally,
we describe the area cluster and two main area operations
in the algorithm as follows.
Area Cluster. For orphan nodes in each level, we cluster
them based on their area centers to decide which operation
will be performed on them. We use the k-means algorithm
with elbow method [41] to determine the cluster number.
The candidate cluster number is set as {1, . . . , n}, where
n is the number of orphan nodes in the current level. This
algorithm is fed with area centers and outputs labeled ones.
Area Fusion and Expansion. Area fusion and expan-
sion are key operations in our graph completion algorithm.
Specifically, area fusion is to find the largest outer rectan-
gle of the two areas as the new area, as depicted in Fig. 6
(a). Due to the careful threshold settings of our area level,
the fused area size will exceed current level and be awaited
for subsequent operations. On the other hand, the expan-
sion operation is to expand the area to the next level size
(Fig. 6 (b)). In particular, suppose the lower bound of size
for the next level is s2, if both of the area width and height
are smaller than s, we expand the height and width of the
area to s, keeping the area center fixed. Otherwise if area
width w � s, we let the area height h = s2/w, keeping the
area center fixed, and vice versa. The above operations are
performed when the expanded area is inside the image. On
the other hand, if the expanded area is outside the image,
the area center will be moved as shown in Fig. 6 (b).
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Figure 6. The Area Fusion and Area Expansion. (a) Area fusion
is to achieve the smallest area (C) containing the input areas (A and
B). (b) Generally, area expansion is to fix the original area center
and expand its size to the smallest size of the next level. When the
original area is too close to the image boundary, we will move the
area center to keep the expanded area inside the image.

7.2. Learning Area Similarity.

We propose the learning area similarity model for area sim-
ilarity calculation, which is the basis of our graphical area
matching. In this section, we describe the training protocol
of this model, including supervision and training details.
Supervision. We generate regular area images from both
indoor and outdoor datasets [11, 27] as training data through
the proposed method in Sec. 3. Then the area pairs with
more than 30% overlap are collected. For each image patch
pi in these pairs, its ground truth activity �gt

i is set as 1,
if more than 60% pixels in it have correspondences in the
other area image, and 0 otherwise. As our classification for-
mulation, we use the binary cross entropy (BCE) of each
patch classification to form the loss function of area simi-
larity calculation (Lasc).

Lasc =
1

Z

ZX

i

BCE(�gt
i ,�i) (16)

Based on this loss, our network can learn to achieve the
similarity between two area images.
Training Details. Following previous point matching
work [40], the proposed learning similarity module is
trained utilizing MegaDepth [27] and ScanNet [11] dataset.
For each image pair sampled in the datasets in every epoch
following [40], we collect up to 5 area image pairs for train-
ing. Fortunately, there is no need to train this model from
scratch, thanks to the similar objective between the coarse
point matching and the area similarity calculation, both of
which aims at patch-level similarities. Therefore, we adopt
the pretrained weights of coarse level feature operation in
ASpan [8] on our network. With the modified output head,



Algorithm 1: Graph Completion
Input: Gini = hVini, Einii
Output: G = hV, Ei

1 for l in [0, L� 1] do

2 initial orphan node set O = ?;
3 for vi 2 {vi|lai = l} do

4 if vi has no parent then

5 add vi into O;

6 cluster the nodes in O based on their area
centers;

7 for each node cluster Ch = {vk}Ck=0 do

8 if C � 2 then

9 for each vk 2 Ch do

10 if vk has not been fused then

11 fuse area ak with its nearest
neighbor an|vn 2 Ch:
af = F (ak, an);

12 generate higher level node vf for
af ;

13 add vf into Vini;
14 form edges by Link Prediction:

{eh}h = LP (vf ,Vini);
15 add {eh}h into Eini;
16 else

17 Update the single node v0:
vu0 = Up(v0);

18 construct edges: {ej}j = LP (vu0 ,Vini);
19 add {ej}j into Eini;

20 E = Eini ;
21 V = Vini ;
22 output the updated AG: G = hV, Ei;

our network is fine-tuned using AdamW [30] on 2 NVIDIA
RTX 4090 GPUs. We use the same learning rate and batch
size settings as ASpan and LoFTR [40] during training.
This model can converge within 3 epochs.

7.3. Graphical Area Matching

In this section, we describe some implementation details of
our graphical area matching. First, we illustrate the com-
plete forward process of area matching. Then, we specific
the parameter settings we recommend and utilized in our
experiments. Next, the details about area image cropping
is presented, which is cropping area images from original
images to serve as input images for the combined point
matcher. The post-processing of point matching within ar-
eas is also illustrated.
Area Matching Process. Given the image pair (I0, I1) and
their area graphs (G0,G1), we first collect area nodes with

specific size level la⇤ from G0 as the source nodes, which
have proper sizes for subsequent point matching. Then,
area matches are found for these nodes from G1 by our
method. Afterwards, we exchange the two images to re-
peat the above operations. The final area matches are the
common matching results.
Parameter Settings. We describe the common parame-
ters for different scenes here. During the AG construction,
the input image are resized to 640 ⇥ 480. The aspect ratio
threshold Tr = 4 and minimal size threshold is Ts = 802.
The number of area size threshold is 4 and specific TLis
are 802, 1302, 2562, 3902, 5602. The �l is 0.1 and �h is 0.8.
In graphical area matching, the � in Eq. (5) is 0.1. The
area similarity threshold Tas = 0.05. The energy balance
weights (µ,↵,�, �) in Eq. (11) are 4, 2, 2, 2. The specific
area level la⇤ for point matching is 1. The TEr in Eq. (15)
is 0.1. Other parameters are specified for different scenes as
described in our paper.
Area Image Cropping and Point Matching. Following
the A2PM framework [52], the next step after area match-
ing is to perform point matching inside area matches. Thus,
these area matches need to be achieved through image crop-
ping. At the same time, one of the benefits of A2PM is
the input image with high resolution that can be provided
to the point matcher. Therefore, the cropping is performed
on original images with the highest resolution. A straight-
forward cropping approach is to crop areas along the exact
bounding box and then resize them to default input size of
point matchers. However, as area sizes can be quite differ-
ent from default input sizes of point matchers, direct crop-
ping and resize introduce severe distortion for point match-
ing, resulting in decreased matching precision (cf. Sec. 9.1).
In order to address this issue, we propose to crop area im-
age by considering the aspect ratio. To be specific, we
force the cropped area image to possess the same aspect
ratio as the input size of the point matcher, while trying
to keep the area center unchanged. If the area respect ra-
tio (Wa/Ha) is larger than the input aspect ratio (Wi/Hi),
we fix the width WA of area image and expand the height
Ha to (Wa ⇥ Hi)/Wi. Otherwise, we fix the height and
expand the width to (Ha ⇥ Wi)/Hi. Moreover, as solid
feature points often cluster in the boundaries of objects, we
set a spread ratio (rs = 1.2) to slightly increase the crop-
ping size, allowing for more precise correspondences on the
boundaries. Finally, if the cropped area exceeds the original
image, we will move its center to keep it inside the image,
similar to our Area Expansion in Fig. 6.

For point matching inside area matches, in practice, we
empirically set the input size of point matchers to a square,
i.e. the input aspect ratio is 1, as it can lead to statisti-
cally the smallest area size adjustment. However, as the
learning models are sensitive to training size and scale (the
area input has different scale with original image), espe-



cially the Transformer [13], the performance of baselines
are decreased, as we shown in Sec. 9.1. Therefore, we fine-
tune the baselines under the square sizes with ground truth
area matches generated by our method, e.g. 640⇥ 640 area
matches in indoor scenes, to achieve similar accuracy with
original models, before combined with MESA.
Post-processing. In SGAM [52], Global Match Collection
(GMC) is proposed to collect precise point matches through
globally entire-image matching, which significantly im-
prove the matching precision [52]. Therefore, we adopt this
module in our method as well and set the occupancy ratio as
0.6. However, as SAM enables areas throughout the image,
MESA usually achieves enough area matches to cover the
whole overlap between images. Thus, this module is only
activated in few cases, but also helpful to precise matching.
As we mentioned before, we also adopt GAM [52] as the
post-processing of area matching.

8. Computation Complexity

Here, we analyze the computation complexity of proposed
graphical area matching.

8.1. Area Similarity Calculation

Firstly, area similarity calculation is performed to achieve
the required node energies in the graph, serving as the pre-
requisite of our graphical area matching. Suppose we have
two AGs, G0 and G1, for the input image pair, G0 gets N
nodes (|V0| = N ) and G1 gets M nodes (|V1| = M ).
Therefore, the dense graph energy calculation needs M⇥N
times similarity calculation. However, owing to the similar-
ity conditional independence of ABN (Sec. 4.3), the actual
number (M 0 ⇥N 0) of similarity calculation is smaller than
M ⇥N , as N 0 < N . Nevertheless, directly setting children
pair similarities as 0 is too rough (Eq. (10)), as large scale
differences also leads to near-zero similarity between areas.
In practise, we only set the related similarities of next level
children as 0 for area matching accuracy and the efficiency
from ABN is still helpful to our approach. Moreover, we
only care about the similarities between source nodes in G0

and other nodes in G1, because we collect source nodes with
specific level from G0 to match, e.g., usually 3 ⇠ 4 areas in
indoor scene and less in outdoor scene. Therefore, we have
M 0 < M . Similarly, in the case of duality, i.e., collecting
source nodes from G1 to match, we only need to perform
a few supplementary calculations, as similarities are sym-
metric and reusable. Thus, the real computation complex-
ity of area similarity computation is O(M 0 ⇥ N 0), where
M 0 ⇥N 0 < M ⇥N .

8.2. Edge Energy Calculation

Except the node energy calculation, the edge energy is also
needed to be determined for Graph Cut. The computation

complexity of edge energy calculation is related to edge
number of G0 and G1. Assume |E0| = E and |E1| = K,
the specific computation complexity is O(E +K).

8.3. Global Energy Minimization

In our global energy minimization for area matching refine-
ment, the matching energy of parent, children and neigh-
bour pairs all need to be calculated. Taking parent matching
energy for example, we derive its computation complexity
as follows. Suppose n nodes are achieved as match candi-
dates through Graph Cut and each node gets Qi, i 2 (0, n]
parent nodes, there are Qi ⇥ V node similarities need to be
accessed (as the similarity calculation is finished), where V
is the parent node number of the source node. Hence, the
total computation complexity for parent matching energy in
global energy minimization is O(

Pn
i Qi ⇥ V ). The chil-

dren matching energy and neighbour matching energy are
similar. As n is the number of node after Graph Cut, it is
small in most cases, e.g., usually < 3 area nodes. Moreover,
the number of parent nodes (or children, neighbour nodes)
is also limited. Therefore, the computation complexity for
global energy minimization is acceptable in practise.

9. Additional Ablation Study

In this section, we examine the performance impact of
more components in MESA, including the input image size
(Sec. 9.1), image cropping approach (Sec. 9.2) and energy
parameter setting (Sec. 9.3).

9.1. Ablation Study on Input Image Size

Input image size is a sensitive parameter for feature match-
ing, as the larger the image size, the higher the resolu-
tion and the richer the information in the image. At the
same time, especially for transformer-based point match-
ers [6, 8, 40], different input image sizes produce widely
varying matching results. To investigate the effectiveness
of our MESA under different image sizes, we construct ex-
periments on ScanNet1500 benchmark [11]. In particular,
we combine our MESA with both semi-dense point matcher
ASpan [8] and dense point matcher DKM [17] to estimate
relative pose from input images with three different sizes:
640⇥640, 480⇥480 and 320⇥320. It is noteworthy that we
choose square sizes, because areas have different raw sizes
and square input leads to smallest distortion from resize.
The original point matchers (ASpan and DKM) are trained
in 640 ⇥ 480 and fine-tuned in 640 ⇥ 640, using ground
truth area matches generated by our method. We compare
MESA baselines with original baselines under the same in-
put size to demonstrate the effectiveness of our methods.
The results are summarised in Tab. 6. The fine-tuned point
matchers achieve comparable results in 640 ⇥ 640 with
original ones in 640 ⇥ 480, proving the fine-tuning is an



Input Image Size Semi-Dense Matcher AUC@5 " AUC@10 " AUC@20 " Dense Matcher AUC@5 " AUC@10 " AUC@20 "

640⇥ 640
ASpan 26.33 45.98 62.12 DKM 28.63 50.84 68.97

MESA ASpan 27.51+4.48% 47.47+3.24% 65.04+4.70% MESA DKM 33.42+16.73% 55.04+8.26% 71.98+4.36%

480⇥ 480
ASpan 21.38 40.53 58.74 DKM 28.85 50.06 68.20

MESA ASpan 24.01+12.30% 43.32+6.88% 60.99+3.83% MESA DKM 33.00+14.38% 54.04+7.95% 71.02+4.13%

320⇥ 320
ASpan 8.95 21.18 37.68 DKM 27.55 48.20 65.96

MESA ASpan 9.60+7.26% 22.17+4.67% 38.70+2.71% MESA DKM 31.43+14.08% 52.56+9.05% 69.99+6.11%

Table 6. Ablation study of area image size. We investigate the performance impact of three different input image sizes for both semi-dense
and dense methods, along with our MESA combined with them. For point matchers, the input image size is the size of resized original
image. For our method, the input image size is the area image size. The pose estimation AUC@5�/10�/20� are reported for evaluation.

Method Cropping Approach AUC@5 " AUC@10 " AUC@20 "

MESA ASpan OAR 24.67 43.72 61.29
ARPM 27.51 47.47 65.04

MESA DKM OAR 30.19 51.49 68.79
ARPM 33.42 55.04 71.98

Table 7. Ablation study of area image cropping. Two different
image cropping methods are compared for the proposed MESA.
Both semi-dense and dense point matchers are combined for eval-
uation. We report the pose estimation AUC@5�/10�/20� and the
best results of two series are highlighted respectively.

effective way to remove the impact from inconsistent im-
age sizes and scales between training and testing. Overall,
MESA effectively increases the performance for both point
matchers under all input sizes. For the semi-dense point
matcher ASpan, the accuracy decreases significantly as the
input size decreases, whereas the improvement achieved by
MESA remains noticeable. Moreover, the improvement
under 480 ⇥ 480 is much better than under 640 ⇥ 640
(12.30% vs. 4.48%), revealing the benefits of high resolu-
tion provided by MESA. On the other hand, DKM is much
more robust under different input sizes and only gets slight
performance declines with smaller input sizes. Meanwhile,
our MESA achieves impressive improvements under all in-
put sizes proving the effectiveness of MESA. Furthermore,
it is worth noting that MESA DKM achieves better results
with smaller input size than original DKM e.g., 33.00 for
MESA DKM under 480⇥480 is better than 28.63 for DKM
under 640 ⇥ 640, indicating the superiority of MESA. In
sum, MESA enables effective matching redundancy reduc-
tion which allows for high resolution input with less match-
ing noises, leading to advanced feature matching under dif-
ferent input image sizes.

9.2. Ablation Study on Image Cropping

The image cropping is a trivial yet important operation for
the A2PM framework, as different cropping approaches
lead to different image resolutions and distortions. Here,
we construct experiments to investigate the impact of dif-
ferent cropping approaches. To be specific, we compare
two different cropping methods descried in Sec. 7.3: 1)

EG Parameters TEmax AOR " AMP@0.6 " Pose AUC@5� " AreaNum "

µ = 5, ↵ = 2,
� = 2, � = 1

0.35 61.76 65.54 23.57 4.69
0.25 63.91 71.13 22.41 3.47
0.15 60.44 62.57 21.46 3.27

µ = 4, ↵ = 2,
� = 2, � = 2

0.35 67.98 80.09 23.74 5.76

0.25 64.94 72.24 24.01 4.62
0.15 61.74 65.50 23.55 3.86

µ = 7, ↵ = 1,
� = 1, � = 1

0.35 65.98 78.10 22.71 3.27
0.25 62.32 66.54 23.56 2.92
0.15 60.32 64.38 22.37 2.77

Table 8. Ablation study of global energy parameters. We com-
pare different parameter settings for global energy refinement in
MESA ASpan and report the area matching performance, area
number per image (AreaNum), and the pose estimation perfor-
mance. Results are highlighted as first , second and third .

Method LoFTR [40] PATS [21] DKM [17] COTR [20] MESA (Ours)
Time(ms)/img 181.5 450.4 1318.5 18975.3 3092.4

Table 9. Time consumption comparison. All methods run on
640⇥ 480 images.

the direct cropping method (OAR), which crops with Orig-
inal Aspect Ratios of areas; 2) the cropping method with
the Aspect Ratio of Point Matcher (ARPM), which first ex-
pands the area to correspond with the aspect ratio of the
point matcher input and then crop areas. The experiment is
conducted on ScanNet1500 [11] benchmark. We combine
MESA with both semi-dense (ASpan) and dense (DKM)
point matchers for complete comparison. Results are sum-
marized in Tab. 7. As we can seen that the ARPM cropping
approach outperforms the OAR approach with a large mar-
gin for both MESA ASpan and MESA DKM, proving its
superiority due to high resolution and less distortion. There-
fore, we adopt the ARPM approach for area image cropping
in MESA.

9.3. Ablation Study on Global Energy Parameters

The parameters for our global energy refinement mainly
consists of global energy balance parameters (EG Param-
eters) in Eq. (11) and the threshold parameter TEmax . The
four EG Parameters reflect the importance of four energy
terms, i.e., self matching energy, parent, children and neigh-
bour matching energy. The TEmax controls the maximum



Figure 7. The Qualitative Results of Area Matching on ScanNet. The area matching results of both SGAM [52] and MESA are
displayed. For better comparison, we also show the SEEM [54] and SAM [22] results which serve as the input for SGAM and MESA
respectively. Different colors in SEEM results represent different labels, but colors in SAM results are only used to distinguish between
different segments. The main drawbacks of SGAM are inaccurate semantic labeling (left top), semantic ambiguity (right top) and unrecog-
nised objects (bottom), which are successfully avoided in our MESA.

energy of the final match, the smaller it is the stricter the re-
finement. Here, we construct experiments on ScanNet1500
to investigate the performance impact of these parameters.
In particular, we compare three groups of EG Parame-
ters and three groups of TEmax to evaluate their impact on
MESA ASpan. The input size of ASpan is 480⇥ 480. The
area matching performance, pose estimation performance
and area number per image are summarised in Tab. 8. Gen-
erally, if two areas are matched, their parent, children and
neighbour nodes should have high similarities due to spa-
tial relationships between them. At the same time, the self
matching energy should still be an important reference in
matching refinement. Thus we choose three parameter set-
tings including different weights on three kinds of node
matching energies and different emphasis on self-matching
energy. The experiment results in Tab. 8 show that the
weights of three parameter settings set to the same is better
for area matching performance (↵= �= � vs. ↵= � 6= �).
Giving sufficient consideration on global matching leads
to accurate area matching along with best point matching
performance (µ = 4 vs. µ = 7). Despite the semi-dense
matcher is not sensitive to area matching accuracy, better
area matching leads to higher pose estimation precision.
Therefore, we choose [4, 2, 2, 2] as our energy setting. On
the other, the TEmax is a critical parameter as well. The
smaller TEmax means stricter global matching energy re-
quest, but it may also mistake some accurate area matches
when too small. Different EG Parameter settings prefer dif-
ferent values of TEmax and 0.35 suits the best for ours.

10. Qualitative Examples

We show some qualitative examples of our method in this
section, including both area matching (Sec. 10.1) and point
matching(Sec. 10.2 and Sec. 10.3).

10.1. Area Matching Comparison.

As can be seen in Fig. 7, we show some qualitative results
of area matching of both MESA and SGAM [52] to com-
pare their performances. It is evident that erroneous area
matches (Fig. 7 top) achieved by SGAM are mainly resulted
from inaccurate semantic labeling by SEEM [54]. At the
same time, MESA addresses this issue successfully by the
utilizing of SAM segmentation, global context modeling by
AG and learning-based area similarity calculation. Thus
MESA is able to obtain precise area matches in SGAM-
failed examples. On the other hand, recognition failure in
semantic segmentation also leads to few area matches in
SGAM, as shown in Fig. 7 bottom, which hinder the per-
formance of subsequent point matching. In contrast, MESA
finds area matches from the SAM segmentation without se-
mantic label, hereby overcoming this limitation, and is able
to expand the benefit of A2PM to more general scenes.

10.2. Outdoor Feature Matching.

We show some qualitative results of outdoor feature match-
ing in Fig. 8. We combine MESA with two different point
matchers, consisting of both semi-dense [8] and dense [17]
matchers, to demonstrate the performance improvement
achieved by MESA. It can be seen that our MESA can



Figure 8. The Qualitative Results on MegaDepth. The improvements achieved by our MESA for both semi-dense [8] and dense [17]
baselines are depicted. We draw more matches for MESA ( 2k) than baselines ( 1k), to better demonstrate the matching distribution
and higher matching precision of MESA. All the pose errors in the top left of the bottom images are estimated with up to 1k matches.

Figure 9. The Qualitative Results on ScanNet. The improvements achieved by our MESA for both semi-dense [8] and dense [17]
baselines are depicted. We draw more matches for MESA ( 2k) than baselines ( 1k), to better demonstrate the matching distribution
and higher matching precision of MESA. All the pose errors in the top left of the bottom images are estimated with up to 1k matches.

Figure 10. The Failure case on MegaDepth. MESA may produce
false area matches when repeated objects and viewpoint variance
occur at the same time. The impact of this kind of erroneous match
can be alleviated by post-processing like GAM [52].

achieve accurate area matches from SAM segmentation,
thereby obtains more accurate point matches and pose es-
timation results. Point matches of MESA are clustered in
multiple areas. Moreover, the areas matched by MESA are
unable to be specified with some semantic labels, thus can
not be established by semantic segmentation-based method,
i.e., SGAM [52]. This proves the superiority of MESA to
extend the benefits of A2PM framework in outdoor scenes.

10.3. Indoor Feature Matching.

In Fig. 9, we show some qualitative results of indoor fea-
ture matching. We also combine MESA with ASpan [8]



and DKM [17], to compare the performances with original
matchers. MESA achieves precise and robust area matches,
leading to prominent matching precision improvement. No-
tably, although inconsistent area fusion in AG construction
exists in MESA, e.g., different fusions of multiple chairs in
the first and third columns, the final weight-based fusion im-
proves the accuracy of area matching, similar to PATS [21].
Finally, the superior point matching resulting from MESA
contributes to impressive pose estimation improvement.

11. Limitation and Future Work

One limitation of MESA is its under-utilisation of SAM fea-
tures. As we mentioned before, SAM possesses the high-
level image understanding across a wide range of domains
due to the massive training dataset and carefully designed
models. Therefore, its image embedding is a extremely
strong high-level representation, which has the potential to
replace our learning similarity model. Then, the computa-
tion cost can be reduced as well. However, the naive at-
tempt to use SAM features as descriptors of areas failed,
possibly because the SAM segmentation pays more atten-
tion on intra-image contexts rather than inter-image ones
like feature matching. Hence, the SAM feature needs fur-
ther distillation for area matching, which will be a objective
of our future work.

On the other hand, as MESA fuses image areas based
on their 2D distances, which is not equivalent to the 3D
situations. Thus, some inconsistent area fusions between
two images arise and lead to inaccurate point matching,
e.g., shown in Fig. 10. Although the post-processing like
GAM [52] may help, it also introduces extra computation
cost. To address this issue, feature-guided fusion can be
adopted, where the SAM feature can be employed and lead
to consistent area fusion.

Another limitation of MESA is the speed, which takes
around 3s per image for area matching as shown in Tab. 9,
limiting its performance in latency-sensitive applications
like SLAM. In Tab. 9, we also compare MESA with recent
point matching methods with regard to running speed, all
of them get 640⇥ 480 image as input and are implemented
on a single NVIDIA 4090 GPU. Although MESA is slower
than most point matchers, it is still faster than COTR [20].
As area matching is a pre-task for point matching, similar
or even faster speed is the object of practical area match-
ing for real-time tasks. It is also worthy to note that the
speed of MESA is independent to image size (fixed area size
is adopted in MESA), while these point matching methods
will get significant increase in elapsed time when the image
size is increased. This drawback is mainly caused by mul-
tiple similarity calculations in MESA, where the utilisation
of SAM features may be helpful as described above. At the
same time, engineering technologies, like parallel area sim-
ilarity computing, can facilitate our area matching. We will

investigate these possibilities in our future work.


