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7. Dataset Details
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Figure 7. Statistics of MMVP subjects.

Synchronization: We uesed an Azure Kinect camera1 and
Xsensor pressure insoles (HX 210-510)2 to capture the data.
Due to this pressure insole’s lack of automatic synchroniza-
tion support, we have designed a coarse-to-fine synchro-
nization method. The pressing switch controls the bulb.
When the switch is pressed with the foot, the bulb illumi-
nates, and the insole detects the pressure simultaneously,
achieving coarse synchronization. Manual fine synchro-
nization is performed by observing the sudden changes in
pressure on the insole, such as landing after a long jump.

Statistics: The dataset consists of a total of 16 subjects,
with 11 males and 5 females. Key statistics (gender, age,
height, and weight) of the subjects are shown in Fig. 7. Syn-
chronized RGBD frames, pressure data, and registrations
are more than 44k frames. The dataset consists of high-
speed and large-range movements, including skipping rope,
long jump, ball throwing, side stepping, running, and danc-
ing.

Ethics: The subjects in MMVP are well-informed and have
voluntarily signed legal agreements to allow the data to be
made public for research purposes.
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Figure 8. foot plane details.
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Figure 9. FPP-Net details.

8. RGBD-P fitting

8.1. Foot Contact Temporal Loss

We design four-foot planes derived from SMPL template
mesh, as shown in Fig. 8. By projecting the foot vertices
of the template SMPL model onto the ground, we acquire

1https://azure.microsoft.com/en-us/products/kinect-dk/
2https://www.xsensor.com/solutions-and-platform/human-

performance/gait-motion-insoles
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Figure 10. Flowchart of pose and translation optimization.

the anterior and posterior foot planes. The points on foot
planes, which are associated with SMPL foot vertices, can
also be controlled by SMPL parameters.

When computing temporal contact constraints, we first
convert the contact of SMPL vertices into contact of points
on the plane. Then, we select the points in each plane
whose spatial position should remain static between adja-
cent frames. Subsequently, we calculate the L2 loss of the
position of these selected points between frame t − 1 and
frame t. By minimizing this loss, we ensure that the se-
lected points on the foot surface maintain consistent spatial
positions over time.

When describing the state of the foot, foot planes can
be more effective compared to foot surface vertices. These
planes can provide valuable information about the orienta-
tion and inclination of the foot relative to the ground, which
can aid in accurately controlling the foot pose. By utiliz-
ing this information from foot planes, we can enhance the
precision and accuracy of foot pose control.

8.2. RGBD-P Fitting Implementation Details

The optimization steps for ground truth generating can be
divided into three parts: shape fitting, pose initialization,
and pose tracking.

The first step is to fit the shape of the human body. We
optimize the shape-related parameters (α, β) for each char-
acter. Specifically, we use the corresponding A-pose se-
quence from the dataset to perform this optimization.

The second step is to fit the initial pose parameter for
each action sequence. For each action sequence, we select

a specific frame, denoted as t0, as the initial moment for
pose tracking. Utilizing the shape-related parameters (α, β)
calculated in the first step, we optimize the pose parameters
(θ0,T 0) for frame t0.

The third step is to generate pose ground truth of each
motion sequence. We leverage the shape-related parame-
ters (α, β) and the initial pose parameters (θ0,T 0) to esti-
mate the pose for the entire motion sequence. During our
tracking process at frame t, (θt−1,T t−1) will be applied in
fitting the pose parameters (θt,T t).

The relevant methods are implemented using Python.
We utilize Adam to optimize Eq. (12) within PyTorch.

8.3. RGBD-P fitting Comparison Details

We compare our results with PROX 3 and LEMO 4 on
MMVP Dataset. All configs are set as their default val-
ues. We use four metrics to evaluate fitting performance:
E3d, Mean Foot-Contact Error (MFCE), F1 score, and IOU.
For the last three metrics, given a fitting result, we set
a fixed threshold to calculate the foot contact Cfitting as
POSA [15]. We calculate the F1 score and IOU between
Cfitting and the ground truth contact C. The Mean Foot-
Contact Error (MFCE) is calculated as ∥Cfitting − C∥2.

Compared to PROX, our method considers body shape
differences between adults and children, ensuring shape pa-
rameter consistency in one motion sequence. PROX sets a
distance threshold between foot and ground, which may re-
sult in sudden motion. To avoid this, our method leverages

3https://github.com/mohamedhassanmus/prox
4https://github.com/sanweiliti/LEMO



dense foot-ground distance as loss function in optimization.
Based on the fitting results of PROX, LEMO considers tem-
poral motion changing and contact consistency, however, it
neglects the alignment with depth data, which can lead to
difficulties in accurately estimating global position.

9. VP-MoCap
9.1. FPP-Net

Network details. We follow PhysCap 5 and Jesse et al. [44]
to construct our network. The details are shown in Fig. 9.
The numbers next to ”Conv.1d” represent the input dimen-
sion, output dimension, and kernel size. The numbers next
to ”Linear” represent the input dimension and output di-
mension. The outputs of FPP-Net are marked in purple.
We train our network for 20 hours (900 epochs). The initial
learning rate is 10−4. The optimizer is Adam.
Dataset split. We split 16 subjects in MMVP into 13 and 3
for training and testing, respectively.
BSTRO fintune details. We fintune BSTRO6 with MMVP-
test on their pre-trained model. All configurations are set to
default values.

9.2. Pose and Translation Optimization Details

As shown in Fig. 10, our pose and translation optimiza-
tion is constructed using several inputs, including the es-
timated contact, human body keypoints, initial shape and
pose, and estimated ground. The estimated contact is esti-
mated through FPP-Net, utilizing human body keypoints as
input, which are estimated by RTMPose [20]. The initial
shape and pose are estimated by the off-the-shelf method
CLIFF [31]. Additionally, the estimated ground is ob-
tained through the application of ZoeDepth [2]. We used
VPoser [39] as human body prior.

9.3. Pose and Translation Optimization Compari-
son Details

We unify the focal length across our method and other
comparative methods, maintaining the remaining settings of
CLIFF 7, TRACE 8 and SMPLer-X 9 consistent with default
parameters.

9.4. More Results on In-the-Wild Datasets

We compared the results on in-the-wild datasets,
3DPW [53] and EMDB [24]. Our method is mainly
designed for videos from static viewpoints, so it remains
challenging to handle moving camera configurations.
Therefore, we selected sequences with relatively static

5https://github.com/soshishimada/PhysCap demo release
6https://github.com/paulchhuang/bstro
7https://github.com/huawei-noah/noah-research/tree/master/CLIFF
8https://github.com/Arthur151/ROMP/tree/master/simple romp/trace2
9https://github.com/caizhongang/SMPLer-X

Methods M. ↓ PM. ↓ PVE ↓ PF. ↓ Traj ↓

3D
PW

CLIFF 85.2 24.6 108.6 153.2 -
TRACE 99.4 37.2 127.0 185.0 -
SMPLer-X 109.3 30.1 137.2 197.1 -
Ours 81.6 41.3 106.4 129.4 -

E
M

D
B CLIFF 93.8 39.7 129.0 146.7 105.2

TRACE 103.0 41.6 133.4 197.8 114.5
SMPLer-X 95.8 35.6 127.0 160.7 4943.0
Ours 89.0 37.3 125.9 115.1 58.8

Table 5. Evaluation of pose and translation estimation on 3DPW
and EMDB.M.: MPJPE, PM. : PMPJPE, PF. : PVE (Feet).

Figure 11. Comparison of 3D translation estimation in 3DPW.
From left to right: SMPLer-X (Purple), TRACE (Green), CLIFF
(Blue), and our method (Pink).

camera movements in 3DPW and EMDB (1K frames from
3DPW and 2.5K frames from EMDB) for conducting the
comparison. Note that 3DPW does not provide GT global
trajectory annotations for evaluation. As shown in Tab. 5
and Fig. 11, our method achieved significant improvement
in global translation estimation on EMDB (3DPW does not
provide GT trans) and also produces slightly better pose
estimation results.


