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1. Network Architecture

The MOHO network architecture consists of three modules:
color feature extraction module, 3D volume rendering head
and 2D amodal mask recovery head. Fig. 1 provides an
overview of the color feature extraction module and the 3D
volume rendering head.

The color feature extraction module bases on ResNet34
[8]. We extract feature pyramids using this backbone, and
utilize a bottleneck convolutional layer to obtain the local
color feature with channel size of 256. Meanwhile, we use
a global average pooling followed by a bottleneck convolu-
tional layer to obtain the global color feature with the same
channel size as the local one. The sum of these two fea-
tures is back-projected onto the corresponding sampled rays,
resulting in the sampled color feature denoted as F_.

For 2D amodal mask recovery head, we utilize a decoder
architecture consisting of multi-scale atrous convolution and
upsampling network referring to the decoder of DeepLabv3+
[4], which is applied to obtain probabilistic hand coverage
maps by processing the image feature pyramids.

For 3D volume rendering head, we use two MLPs to en-
code SDF value and RGB density respectively similar to
NeusS [13]. The geometric field ©g is modeled by an 8-layer
MLP with hidden size of 512. Softplus with 5 = 100 is used
as activation function for each hidden layer. A skip connec-
tion with a scale of /2 /2 is used at the fourth layer, in order
to concatenating the input and intermediate hidden code.
The concatenated point feature Cat (F., Ep (P;) , Fi, F}.)
is fed to the geometric field, and a linear layer with output
size of 257 is applied at the end to yield a SDF value s;
and a 256-dimensional SDF feature vector ]—"g pr for this
sampled point. Subsequently, the color field ¢ is modeled
by a 4-layer MLP with ReLU as activation function and
hidden size of 512. The input is the ray feature consisting of
Cat (F:, Ep (D;) , N, Fi ), where N denotes the nor-
mal vector of the geometric field N = Vg (Pi|Fl,,).
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The color field yields 3-dimensional RGB density ¢; with
the help of a linear layer and a Sigmoid layer. We apply it to
render the color of the pixel by Eq. 4 in the main manuscript.
The Ep and Ep denote the positional and directional encod-
ing functions respectively. We apply Ep for spatial location
P; with 6 frequencies and E'p for viewing direction D; with
4 frequencies.

2. Details of Synthetic Data Rendering for
SOMYVideo

For SOMVideo rendering, we generate each hand-object
scene on the basis of the released rendering code of Ob-
Man [7] dataset. Following this setting, we select 8 object
categories (bottles, bowls, cans, jars, knifes, cellphones, cam-
eras and remote controls) from ShapeNet [1] dataset, which
results in a total of 2772 meshes. The object textures are
randomly sampled from the texture maps provided with
ShapeNet models, and the body textures are sampled from
the full body scans used in SURREAL [11]. The skin tone
of the hand is matched to the facial color of the body. The
backgrounds are sampled from LSUN [16] and ImageNet
[9] following the ObMan setting. To render reference views
for our synthetic pre-training, we keep the selected shapes,
grasps and body poses unchanged as in the ObMan dataset
for their plausibility. Thus, the comparison between our pro-
posed pre-training strategy with the previous 3D-supervised
pre-training [14] adopting ObMan dataset is strictly fair. We
generate 141,550 scenes in total, which exactly corresponds
to the scenes in ObMan’s training split. After constructing
the hand-object interaction scenes and selecting the reference
view, we aim to generate multi-view images capturing such
hand-object scenes and occlusion-free supervisions. To yield
them, we fix the position of the grasped object and rotate the
camera around it. The rotated camera trajectory is a circle
around the y-axis, centered at the object and with a fixed ra-
dius. The radius is randomly sampled between 50 and 80 cm,
kept the same as the implementation of ObMan. The camera
rotates 360 degrees in total, and the video clips are obtained
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Figure 1. Overview of the MOHO network architecture.

by sampling 10 positions uniformly on the trajectory. We
keep the angle of the camera’s rotation around the y-axis
equal to the angle of the camera’s rotation around its origin,
in order to force the camera to focus on the object. When
rendering the corresponding videos without hand-induced
occlusion, we only retain the object without the sampled hu-
man body in the scene and set the background to white. Other
details are kept exactly the same as the generation process of
multi-view hand-object images. Some examples exhibiting
our rendered hand-object reference view and occlusion-free
supervising views are shown in Fig. 2. The SOMVideo data
is released along with our codes.

3. Additional Loss Terms

Two additional losses introduced in Sec. 3.3 of the main
manuscript regularizing the predicted surface normals are
used for restricting the orientation of visible normals to-
wards the camera (L,,_,,) [12], and making the predictions
smoother (L, ) [10]:

_1 (0. —ris - D))
L, = m;(mm(o, ni - D;))*, (D

1 .
Lo, = e ;(ﬁk — 1K), (2)

where K is the capacity of K-nearest-neighbor (KNN)
region, set to 16 during implementation; ng,; =
> w(j)Vips(P(4)), corresponding to the sampled ray k or
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Figure 2. Rendered reference views and occlusion-free views in
SOMVideo for our proposed synthetic pre-training.

i; 1y, is the average normal vector in the KNN region. The
definition of D;, m, w, ¥s and P is kept the same as the
main manuscript.

4. Limitation Analysis

As shown in Fig. 3, although MOHO can reconstruct pho-
torealistic textured mesh of hand-held object from a single
view, some holes can be found on the reconstructed sur-
face, as well some inconsistent textures are generated. More
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Table 1. Zero-shot experiments of MOHO against 3D-supervised
baselines.

advanced backbones or differentiable rendering techniques
could be used for better results. In addition, since current
real-world hand-object video datasets are of relatively small
scale, the scene, hand and object variety is limited. The
generalization ability across large-scale scene, hand and ob-
ject variety could be improved for MOHO as new powerful
datasets are proposed.

5. Efficiency Analysis

To demonstrate the efficiency of MOHO, we compare its
running speed to generate the reconstructed object mesh with
IHOI, which is the top-performing SDF-based single-view
hand-held object reconstruction method. All experiments are
conducted on a single NVIDIA A100 GPU with a reference
image as the input (the batch size is set to one). MOHO
runs at 10 FPS, which is slower than IHOI with 23 FPS, but
still achieves comparable efficiency. The decrement of the
inference speed mainly comes from the color branch of our
network for texture reconstruction.

6. Zero-shot Experiments

Tab. 1 exhibits the zero-shot experiments of MOHO against
3D-supervised baselines. For fair comparison during imple-
mentation, both 3D-supervised baselines IHOI and gSDF
are pre-trained on ObMan dataset and directly tested on

Noise F5 1 F10 1 CD |

Pred 0.60 0.81 0.15
Pred + 0=0.1 0.58 0.78 0.16
Pred + 0=0.5 0.55 0.75 0.18

GT 0.63 0.82 0.14
GT + 0=0.1 0.60 0.79 0.16
GT +0=0.5 0.57 0.76 0.17

Table 2. Ablation studies for the input predicted hand pose on
DexYCB [2].

HO3D and DexYCB respectively. MOHO is pre-trained
on SOMVideo with exactly the same ObMan shapes. Re-
sults show because of the effectiveness of our proposed
synthetic pre-training technique for constructing hand-object
correlations in both 3D and 2D space, MOHO gains more
generalization ability. Concretely, MOHO exceeds IHOI by
64.2% of F-5 on HO3D and leads gSDF by 40.0% of F-5 on
DexYCB.

7. Ablations on the Sensitivity of the Input
Hand Pose Predictions

Tab. 2 shows the sensitivity of the input hand pose predic-
tions of MOHO. We add some Gaussian noises with spec-
ified variance for this ablation study. Results illustrate that
MOHO gains some robustness against wrong and noisy hand
pose predictions. Meanwhile, if the quality of input hand
poses is improved, MOHO yields more accurate reconstruc-
tion results, which also demonstrates the effectiveness of our
adopted hand-articulated geometric embeddings.

8. Visual Demonstration of the Occlusion Re-
moval Ability of MOHO

In Fig. 4, we compare the visualization results of novel
view synthesis to investigate the occlusion removal ability
of MOHO. Specifically, results from SSDNeRF [3], MOHO
w/o synthetic pre-training (SYN), and MOHO are exhibited
to illustrate the effectiveness of our strategy to resist hand-
induced occlusion in real world.

Line 1 indicates that SSDNeRF [3] lacks the ability to
remove occlusion, which results in the failure to reconstruct
hand-covered regions of the input reference view. The bleach
cleanser on the left is reconstructed neglecting the occluded
parts (presented as the black fragmentary holes), while the
mug on the right is generated with a distorted shape. The
main reason is that the incomplete supervision of real-world
videos leads the network only to reconstruct visible parts to
get local optimum. MOHO w/o SYN can get a little more
coherent reconstruction though, the occluded parts are still
difficult to complete (the bleach cleanser in the left, line 2).
Moreover, the shape distortion is not released utterly due to
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Figure 5. Additional visualization of textured meshes on HO3D [6].

the lack of complete geometric guidance during training (the
mug on the right, line 2). In contrast, MOHO with the whole
synthetic-to-real framework can solve the problem of hand-
induced occlusion greatly due to adequate occlusion-aware
knowledge transferring. It generates photorealistic novel
views for occluded inputs (Line 3), as well as accurately
reconstructs the shape of objects.

9. Additional Qualitative Results

We visualize additional textured meshes predicted by MOHO
and some competitors including IHOI [14], gSDF [5] and SS-
DNeRF [3] in Fig. 5 and Fig. 6 for HO3D [6] and DexYCB
[2] respectively. Compared to the baselines, the predicted
textured meshes by MOHO are complete and photorealistic,
showing that MOHO releases real-world occlusion obviously
and performs well in both mesh reconstruction and texture

prediction.

10. Qualitative Results of Novel View Synthesis

We visualize novel view synthesis of MOHO and the NeRF-
based competitors PixeINeRF [15] and SSDNeRF [3] in Fig.
7 and Fig. 8 for HO3D [6] and DexYCB [2] respectively.
Qualitative results on novel view synthesis show due to the
imposed partial-to-full cues and the proposed synthetic-to-
real framework, MOHO is endowed to handle complex oc-
clusion scenarios in real world and generates more complete,
photorealistic, and coherent novel views.
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