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Supplementary Material

6. Introduction
The supplementary material validates the effectiveness of our ED-
ITOR with additional evidences. We extend our ablation exper-
iments to vehicle datasets, providing more visualization results.
More specifically, the experiment section provides more insights
and explore the impact of various hyper-parameters. The visu-
alization section shows the selection effects with different kinds
of objects, such as person and vehicle. In conclusion, the sup-
plementary material provides a comprehensive exploration of ED-
ITOR’s effectiveness, extending its applicability beyond person-
centric scenarios to vehicles.

7. Experiments
7.1. More Ablations on Multi-modal Person ReID
Effect of Patch Features in HMA. In Tab. 5, the first row indi-
cates the absence of using averaged patches. In this scenario, after
HMA, each modality’s class token is concatenated to form the final
retrieval representation. Conversely, the second row signifies the
usage of averaged patches, where each modality’s global feature
is concatenated with the average token of the selected local fea-
tures, followed by global supervision. The comparison highlights
the importance of local features, providing fine-grained details.

Methods
RGBNT201

mAP R-1 R-5 R-10
w/o averaged patches 61.0 60.8 75.2 82.4
w/ averaged patches 65.7 68.8 82.5 89.1

Table 5. Effect of local features.

Effect of Exponential Parameter in OCFR. As shown in Fig.
7, with the OCFR parameter gradually increases from 0.1 to 0.8,
the model shows a fluctuation in performance. The mAP increases
from 64.8% at OCFR 0.1 to 65.7% at OCFR 0.8. Similarly, Rank-
1 improves from 65.8% to 68.8%. However, a slight performance
decline is observed when OCFR is set to 1.0. This indicates that a
moderate momentum parameter in OCFR can enhance the model’s
ability to aggregate features with the same ID within each modal-
ity. However, excessively large values may introduce noise, im-
pacting overall performance.
Effect of Decomposition Scales in DHWT. Fig. 8 indicates that
with the increase in decomposition levels, the overall metrics show
an initial rise followed by a decline, reaching optimal results when
the decomposition level is 4. The results reveals the impact of
DHWT decomposition scales on performance, showcasing an im-
provement in detail discernment with higher hierarchical scales.
As the hierarchy increases, the frequency-based selection demon-
strates enhanced control over fine details in the images. This sug-
gests that a more intricate decomposition hierarchy contributes to
better performance in capturing image details. However, at exces-
sively high levels, there is a risk of introducing irrelevant noise,
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Figure 7. Effect of exponential parameter in OCFR.
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Figure 8. Effect of decomposition scales in DHWT.

resulting in a certain decline.
Effect of the Weight of BCC Loss. Fig. 9 shows that mAP
and Rank-1 achieve their peaks at a BCC loss weight of 1. As
the weight increases, performance gradually decreases, suggest-
ing that an overly emphasized background consistency may lead
to a decline in performance. Therefore, finding a balance between
dynamic alignment and background consistency is crucial.
Effect of the Weight of OCFR Loss. Fig. 10 indicates that the
model’s optimal performance stems from a balanced emphasis on
intra-modal feature alignment and inter-modal feature discrimina-
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Figure 9. Effect of the weight of BCC loss.
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Figure 10. Effect of the weight of OCFR loss.
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Figure 11. Comparison of different integrated attention layers.

tion via the OCFR loss. However, as the weight increases, there
is an apparent excessive focus on inter-modal discrimination, re-
sulting in reduced intra-modal alignment and overall performance.
Furthermore, certain weight values introduce model instability,
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Figure 12. Performance comparison of spatial-based selection.
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Figure 13. Performance comparison of frequency-based selection.

leading to fluctuations in performance.
Effect of Integrated Attention Layers. In Fig. 11, we compare
the performance of different integrated attention layers. The re-
sults indicate that with all layers, our model achieves the best per-
formance, demonstrating the importance of integrating multi-level
attention for multi-modal representation learning.
Effect of Spatial-based Token Selection. Fig. 12 shows the im-
pact of token numbers retained per head in spatial-based token
selection. As the number increases, the mAP and Rank-1 ini-
tially rise and then decline. Meanwhile, the reserved tokens show
a rapid increase, reaching 87.5% when each head retains 8 to-
kens. However, this leads to background interferences, resulting
in poorer performance. Notably, with two tokens per head, our
model significantly improves the performance by capturing more
object-centric parts in each modality.
Effect of Frequency-based Token Selection. In Fig. 13, we study
how frequency-based token selection impacts the model. Similar
to Fig. 12, there is an initial increase followed by a decrease. As
the frequency-based tokens increase, the model’s performance de-
cline is more noticeable than with spatial-based selection. This is
because frequency-based tokens remain fixed, not adapting with
learning. Some salient tokens may introduce extra noise.

7.2. More Ablations on Multi-modal Vehicle ReID
Parameter Analysis in EDITOR. In Tab. 6, we present a pa-
rameter comparison of our method and other methods. TransReID
holds a large parameter count, while GraFT, leveraging a shared
backbone for feature extraction, significantly reduces parameters.
In contrast, our EDITOR has comparable parameters to GraFT,
but delivers much better results. It even shows better results than



Figure 14. Alignment visualization in HMA with all modalities.

TOP-ReID, which has a larger parameter count.

Table 6. Parameter comparison in our framework.

Methods Params(M)
RGBNT100

mAP Rank-1
PCB [34] 72.33 57.2 83.5

OSNet [57] 7.02 75.0 95.6
HAMNet [17] 78.00 74.5 93.3
CCNet [54] 74.60 77.2 96.3
GAFNet [9] 130.00 74.4 93.4

TransReID* [13] 278.23 75.6 92.9
UniCat* [4] 259.02 79.4 96.2
GraFT* [48] 101.00 76.6 94.3

TOP-ReID* [43] 324.53 81.2 96.4
EDITOR* 118.55 82.1 96.4

Effect of Key Components on RGBNT100. In Tab. 7, we present
a comprehensive performance comparison of various components
on vehicle dataset RGBNT100. We improve the baseline model
(Model A) with more components. Model B, incorporating HMA,
demonstrates a 2.7% increase in mAP, showcasing its effective-
ness in aggregating multi-modal features. Model C, introducing
SFTS, achieves further improvement, highlighting the efficacy of
object-centric token selection. The integration of BCC (Model D)
dynamically aligns multi-modal distributions, resulting in a sub-
stantial 1.5% mAP enhancement compared to Model C. Addition-
ally, Model E enhances feature distribution compactness, leading
to robust improvements. The combination of all components in
EDITOR (Model F) achieves optimal performance, verifying the
effectiveness of our methods on vehicle datasets.

8. Visualization
More Visualizations of HMA on Feature Alignment. In Fig.
14, we employ the cosine similarity distribution between class to-
kens of different modalities, examining the impact before and after
HMA. The results highlight the notable improvement in aligning
class tokens with patch tokens across modalities after HMA, show-
casing the efficacy of HMA in enhancing the feature alignment and

Table 7. Performance comparison with different components.

Module Loss RGBNT100
SFTS HMA BCC OCFR mAP R-1 R-5 R-10

A ✕ ✕ ✕ ✕ 75.1 93.4 95.0 95.8
B ✕ ✓ ✕ ✕ 77.8 94.0 95.1 96.0
C ✓ ✓ ✕ ✕ 79.1 94.3 95.3 96.1
D ✓ ✓ ✓ ✕ 80.6 95.5 96.4 97.2
E ✓ ✓ ✕ ✓ 80.4 94.8 95.5 96.3
F ✓ ✓ ✓ ✓ 82.1 96.4 96.9 97.4
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Figure 15. Selecting stability of reserved patches.

aggregation for multi-modal representations.
Stability of the BCC Loss. The BCC loss stabilizes the selection
process by aligning background features from different modalities.
In Fig. 15, we depict the Intersection over Union (IOU) of the re-
tained patches between adjacent epochs, comparing the scenarios
with and without the BCC loss throughout the training process.
It is evident that the BCC loss introduces a noticeable smooth-
ing effect on the token selection process across the entire dataset,
maintaining a more stability of certain patches.
Selected Tokens at Different Stages. In Fig. 16 and Fig. 17, we
visualize the selected tokens at different stages on the person ReID
dataset RGBNT201 and the vehicle dataset RGBNT100, respec-
tively. Taking RGBNT201 as an example, in Fig. 16, the top row
displays the input images from various modalities, revealing dis-
tinct details. In Fig. 16(e), we present the results after performing
DHWT for collaborative transformation, highlighting significant
areas corresponding to object-centric regions. Fig. 16(g)-(i) il-
lustrate the image regions corresponding to the selected tokens by
individual modalities, emphasizing the substantial differences in
the focused areas. Through modality union, we capture a diverse
range of detailed regions, yielding the composite result shown in
Fig. 16(d). In Fig. 16(d), we can observe the effect of using spatial
attention for selection, already effectively capturing most crucial
areas. By incorporating the selection of other object-centric re-
gions in Fig. 16(f), we obtain the final selection result as shown in
16(j)-(l). In Fig. 16(l), we clearly observe that essential features
of the human body are well-preserved. Similar results can be ob-
served in Fig. 17 on the vehicle dataset. These visualizations fully
validate the effectiveness of our EDITOR.
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Figure 16. Visualization of selected tokens at different stages (Person). (a) RGB images; (b) NIR images; (c) TIR images; (d) Spatial-based
token selection; (e) DHWT effect; (f) Frequency-based token selection; (g-i) Spatial-based token selection from RGB/NIR/TIR; (j-l) Final
tokens for RGB/NIR/TIR. Note that we project the selected tokens back to the corresponding image regions.
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Figure 17. Visualization of selected tokens at different stages (Vehicle). (a) RGB images; (b) NIR images; (c) TIR images; (d) Spatial-
based token selection; (e) DHWT effect; (f) Frequency-based token selection; (g-i) Spatial-based token selection from RGB/NIR/TIR; (j-l)
Final tokens for RGB/NIR/TIR. Note that we project the selected tokens back to the corresponding image regions.
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