
MaskPLAN: Masked Generative Layout Planning from Partial Input

Supplementary Material

This supplementary material is structured as follows:
• Sec. 1 explains the architecture of the Attribute Discrete

Latent Model (ADLM).
• Sec. 2 gives definitions of the ADLM loss functions.
• Sec. 3 talks about the framework detail in Graph struc-

tured Dynamic Masked AutoEncoders (GDMAE).
• Sec. 4 exhibits more ablation studies.
• Sec. 5 illustrates additional results: (1) qualitative evalu-

ations of our methods and the baselines. (2) flexibility of
User-AI interactions in MaskPLAN.

1. Architecture of ADLM
Training on multiple sequences of high-resolution images
is a computationally intensive task. The Attribute Discrete
Latent Model (ADLM) is leveraged to encode the image in-
formation of site condition B, as well as layout attributes
Cimg , Simg and Rimg into a lower dimension as visual to-
kens I ∈ RK , which subsequently are used as pretrained
prior to the GDMAE. This model is generally built on VQ-
VAE [5], which contains an encoder E and a decoder D,
with a latent embedding space d ∈ RK×V. ADLM leveraged
a vector quantizer q that indexes the visual tokens I ∈ R8×8

to map d from the encoder output. The discrete visual to-
kens I , parsed from the original images, subsequently serve
as input and ground truth for training GDMAE.

All image datasets are normalized in the range (0,1), also
split into 0.8:0.1:0.1 for training, validating, and testing. We
set the size of discrete latent space K to 8 × 8 and the di-
mension of the embedding vector V to 64. See Sec. 4 for
the ablation study on these hyperparameters.

Module Layers Output Size

Encoder E

Conv2D(64, s = 2) 64× 64× 64
Conv2D(128, s = 2) 32× 32× 128
Conv2D(256, s = 2) 16× 16× 256
Conv2D(512, s = 2) 8× 8× 512
Conv2D(64, s = 1) 8× 8× 64

Decoder D

Conv2DT(512, s = 1) 8× 8× 512
Conv2DT(256, s = 2) 16× 16× 256
Conv2DT(128, s = 2) 32× 32× 128
Conv2DT(64, s = 2) 64× 64× 64
Conv2DT(4, s = 2) 128× 128× 4

Table 1. Architecture details of E and D in ADLM.

Table 1 describes the architecture in E and D, where
Conv2D() and Conv2DT() denote 2D convolution layer and
2D transposed convolution layer, respectively. All the lay-

ers are configured with 2× 2 kernel size and zeros padding.
We trained ADLM using Adam as the optimizer, with

an initial learning rate of 10e−4 and 0.5 decay per every 5
epochs. A batch size of 32 was used for training each of the
four pretrained models (B, C, S, and R), and the training
process was carried out for 50 epochs. The training duration
for all four models on AMD 5950X and a single RTX-Titan
GPU was approximately 34 hours, while the time cost for
preprocessing these four image datasets (2.23 M images in
total) into visual tokens was nearly 41 hours.

2. ADLM Loss Functions
The loss function of ADLM consists of three components:
reconstruction loss, Vector Quantisation (VQ) loss, and
commitment loss. The VQ loss is leveraged to move the em-
bedding vectors toward the encoder outputs ze(M) (second
term in Eq. 1), and the commitment loss serves to constrain
the encoder to commit to one embedding space (third term
in Eq. 1). The total loss LADLM is structured as follows:

LADLM = LogP(M | zq(M)) + || sg [ze(M)]− d ||22
+ || ze(M)]− sg [d] ||22

(1)

where M refers to the training image, LogP(M | zq(M))
is defined as reconstruction loss, zq(M)) and ze(M)) refer
to decoder input and encoder output respectively. sg denotes
the stopgradient operator, defined as an identity to constrain
its operand to be a non-updated constant.

3. GDMAE
Model Architecture. Our GDMAE consists of six compo-
nents, including the partial input encoder EU and five mu-
tually related generators GT , GC , GA, GS , and GR. Layout
attributes are decoded in a procedural manner, where each
prior feature conditions the subsequent ones.

The framework detail of Graph-structured Dynamic
Masked Autoencoder (GDMAE) is provided in Table 2: (1)
GlobalEncoder() denotes the transformer encoder built for
partial input. (2) GeneraEncoder() and GeneraDecoder()
correspond to the generator encoder and decoder modules
that are explained in the main paper. (3) PosiEmbed() rep-
resents the positional embedding layer. (4) MLP(Concat())
indicates the layer combination of Concatenation and MLP.
(5) Softmax() refers to the layer combination of Dropout,
MLP, and Softmax. (6) M() represents the masked input se-
quence. (7) In() denotes the input sequence with the [Start]
and [End] tokens. The dimensions K and V are inherited
from the hyperparameters in the pretrained ADLM (Sec. 1).



Index Inputs Layers Output Size

EU

0 - M(Type) 10× 1
1 - M(Location) 10× K
2 - M(Adjacency) 10× 8
3 - M(Area) 10× K
4 - M(Region) 10× K
5 - In(Site) 10× K
6 0 PosiEmbed() 10× H
7 1 PosiEmbed() 10× H
8 2 PosiEmbed() 10× H
9 3 PosiEmbed() 10× H

10 4 PosiEmbed() 10× H
11 5 MLP() 10× H
12 6-11 MLP(Concat()) 10× H
13 12 GlobalEncoder() 10× H

GT

14 - In(Type) 10× 1
15 14 PosiEmbed() 10× H
16 13,15 GeneraDecoder() 10× H
17 16 Softmax() 10× 8

GC

18 - In(Location) 10× K
19 18 PosiEmbed() 10× H
20 13,16 MLP(Concat()) 10× H
21 20 GeneraEncoder() 10× H
22 19,21 GeneraDecoder() 10× H
23 22 Softmax() 10× K × V

GA

24 - In(Adjacency) 10× 8
25 24 PosiEmbed() 10× H
26 20,22 MLP(Concat()) 10× H
27 26 GeneraEncoder() 10× H
28 25,27 GeneraDecoder() 10× H
29 22 Softmax() 10× 8× 2

GS

30 - In(Size) 10× K
31 30 PosiEmbed() 10× H
32 26,28 MLP(Concat()) 10× H
33 32 GeneraEncoder() 10× H
34 31,33 GeneraDecoder() 10× H
35 34 Softmax() 10× K × V

GR

36 - In(Region) 10× K
37 36 PosiEmbed() 10× H
38 32,34 MLP(Concat()) 10× H
39 38 GeneraEncoder() 10× H
40 37,39 GeneraDecoder() 10× H
41 40 Softmax() 10× K × V

Table 2. General architecture of GDMAE in MaskPLAN.

Specifically, our hyperparameter settings follow the ViT-
Base [1], where all encoders and decoders are defined with
12 layers of attention modules and 12 heads in multi-head
attention. The embedding hidden dimension H is set to 768,

and the MLP size is 3072. Both modules, GG and GS,R, are
trained with a batch size of 32 for 200 epochs using a linear
learning rate warmup and decay.

ViTs Params Training t Infer t fidimg

ViT-Tiny 175.5 M 34 h 2.17s 5.391
ViT-Base 542.1 M 127 h 3.61s 4.182
ViT-Large 1203.9 M 429 h 6.79s 4.073

Table 3. The training cost and inference performance of Mask-
PLAN structured with different variants of the ViT model. Quan-
titative evaluation is calculated on fidimg .

ViT Variants. As shown in Table 3, we conducted ex-
periments on MaskPLAN with three variants of the ViT
models: ViT-Tiny, ViT-Base, and ViT-Large. Training
and inference were performed on an AMD 5950X and a
single RTX-Titan GPU. As GG and GS,R are trained and
inferred separately, these two modules sum up the final
time cost. Notably, MaskPLAN with ViT-Tiny requires
the least amount of time for training and inference, but
its performance on layout reconstruction is comparatively
worse. MaskPLAN with ViT-Large demands significantly
more time for both training and inference, resulting in only
marginal improvements in layout prediction. MaskPLAN
with ViT-Base strikes the optimal balance between time cost
and layout reconstruction performance.

Post-Processing. An initial rough layout can be gen-
erated by assigning the corresponding room types T when
obtaining the final regions R. We further perform a post-
processing step to properly align rooms with the site bound-
ary and other rooms. Specifically, each room region in pixel
space is converted into a bounding box, represented by cor-
ners p ∈ {Xmin, Ymin, Xmax, Ymax}, where X and Y de-
note the left and right corners and min and max refer to the
lower and upper corners. These corner points then assess
the neighboring environment and calculate the adjustment
distance required to match the context, defined as follows:

d(Rp, Rt) =

{
0 , ifRp ∩Rt == 0

minq∈Rt
||p− q|| , otherwise

(2)
where Rp represents an 9 × 9 bounding box region

centered on the corner point p, Rt denotes the target re-
gion to align with, and q ∈ Rt indicates all the pixel
points within the target region. By calculating the mini-
mum distance between the corner points p and the target
region RB , denoted as minq∈Rt ||p − q||, each corner in
{Xmin, Ymin, Xmax, Ymax} can be properly adjusted. We
first align point p with the site boundary region B and then
realign p with all the existing predicted room regions R.



Figure 1. Additional qualitative comparisons on layout reconstruction, with Rplan, Graph2Plan, iPLAN, and three of our approaches.

4. Additional Ablation Studies
We conduct additional ablation studies to demonstrate our
technical contribution:

Ablation Setting fidimg

w/o adjacency A 7.215
w/o size S 6.737

w adjacency A and size S 4.182

Table 4. Ablation study on the model without training A or train-
ing S. Quantitative evaluation is calculated on fidimg .

(1) Attributes A and S: every floorplan is represented
as 5 essential layout attributes L = {T, C, A, S, R}. We ob-
served several existing literature decompose the floorplan
without adjacency A or room size S, leading to the inabil-
ity to adjust room relations [2, 6] or the absence of ma-
nipulation for room sizes [2–4, 6]. The lack of capability
in sufficient attribute manipulation may hinder design cus-
tomization in coping with various demands from users. In
addition, we evaluate our model trained without A or S, as
shown in Tab. 4. It’s evident by the results in fidimg that
integrating information of A or S could also effectively en-
hance the accuracy of layout reconstruction.

KV 32 64 128 256

4× 4 9.433 7.719 6.513 5.747
8× 8 4.394 4.231 4.443 4.826
16× 16 4.915 5.413 6.291 7.104

Table 5. Ablation study with hyperparameters on latent embedding
space d ∈ RK×V. Quantitative evaluation is calculated on fidimg .

(2) Latent embedding space: the latent vector d ∈
RK×V is defined in pretrained ADLM, where K is the size of
discrete latent space and V is the dimension of each latent
embedding vector. The dimension of visual tokens I ∈ RK

will correspond to this parameter, serving as the informa-
tion bridge between ADLM and GMAE. Achieving a care-
ful balance is essential; a larger dimension may result in
a lower loss in the pretrained ADLM but poses more chal-
lenges for the GMAE during training. Conversely, a smaller
dimension makes training in GMAE easier but significantly
hinders proper reconstruction in ADLM. As demonstrated
in Tab. 5, due to the time-consuming training process on the
entire dataset (200+ h), we randomly sampled 25 % training
data and conducted experiments with various combinations
of K and V. It turns out that K = 8×8 and V = 64 represent
the optimal balance between training these two models.

5. Additional Results

(1) Fig. 1 presents additional comparisons of generated lay-
outs. Similar to the layout comparisons in the main pa-
per, Our III demonstrates the best performance compared
to all other methods. Our I showcases significant diversity
in layout creation, while with 25% partial input, most of
the rooms in Our II align much closer to the ground truth,
emphasizing the effectiveness of our partial input guided
generation in layout reconstruction.

(2) Fig. 2 illustrates examples of generated results across
various ratios of partial input. As indicated in Table 2 of
the main paper, when MaskPLAN is provided simply with
the boundary condition B, it struggles to reconstruct the
ground truth accurately. However, a notable improvement
is observed when partial input is introduced.

(3) Single-attribute Guidance. Owing to the versatility of



Figure 2. Generated layouts from various ratios of random sampled partial information.

Figure 3. single-attribute guided generations, from partial input or complete input in each feature. MaskPLAN enables new design
workflows for designers: (1) predict layouts by simply providing preferred room areas; (2) specify only room adjacency to generate a
fitting floorplan; (3) generate feasible layouts with only room locations (even with no room types given).

partial input encoding, MaskPLAN facilitates new design
workflows for designers. This is enabled by single-attribute
guided generation, allowing users to inform only one of
the five generators in the MaskPLAN framework at a time.
Synthetic results are shown in Fig. 3. The experiments,
utilizing either partial attribute sequences or complete at-
tribute information, demonstrated that complete attribute in-

formation significantly enhances layout reconstruction ac-
curacy. Three specific novel workflows include predicting
layouts by: (1) providing only a list of preferred room areas
(functionally-driven); (2) specifying only room adjacencies
(functionally-driven); and (3) a list of locations for unspec-
ified rooms (composition-driven).
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