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In this supplement, we provide the following:
• More ablation results for different non-zero weight com-

binations for three proxy tasks.
• More experimental results of the proposed proxy tasks

with other backbones on the Avenue and ShanghaiTech
datasets.

• More qualitative results, including the gap between the
anomaly scores of normal and anomalous frames on the
Avenue and ShanghaiTech datasets and running time.

• Evaluation of the generalization capacity of the proposed
framework.

• More visualization examples on the ShanghaiTech
dataset.

1. Different Combinations of Weights
In the implementation details, we empirically set the loss
weights of all three proxy tasks as w1 = w2 = w3 = 1.0
for training, and we experimented with combinations of
more non-zero weights on the Avenue and ShanghaiTech
datasets. Table 1 reports the Micro AUC scores for differ-
ent combinations.

The experimental results corroborate with experience
that the model achieves optimal performance when all three
weights are set to 1.0 (ID 16). As described previously,
the three proxy tasks learn normal model features from dif-
ferent aspects. Continuity judgment learns the global mo-
tion pattern and long-range features, thus it can bring sig-
nificant gains to the model on the Avenue dataset (ID 7-
12), which has a relatively homogeneous scene and mo-
tion. Discontinuous localization learns motion differences
between frames and short-range features in a fine-grained
manner. Therefore, it can be effective not only on the Av-
enue dataset, but also on the ShanghaiTech dataset (ID 1-3
and ID 13-16). Missing frame estimation focuses on un-
derstanding the scene and motion, thus significant benefits
can be achieved on Campus datasets that contain scene-
dependent anomalies. While competitive performance can

ID w1 w2 w3 Avenue ShanghaiTech
1 1.0 0.1 0.1 85.4 78.5
2 1.0 0.5 0.1 88.1 80.7
3 1.0 0.8 0.1 90.5 83.0
4 1.0 1.0 0.1 91.3 83.7
5 1.0 1.0 0.5 91.9 84.2
6 1.0 1.0 0.8 92.1 84.5
7 0.1 1.0 0.1 88.1 83.5
8 0.5 1.0 0.1 90.2 83.7
9 0.8 1.0 0.1 91.1 83.8

10 0.1 0.1 1.0 87.6 81.6
11 0.5 0.1 1.0 88.2 81.9
12 0.8 0.1 1.0 88.7 82.1
13 1.0 0.1 1.0 89.1 82.2
14 1.0 0.5 1.0 90.8 83.4
15 1.0 0.8 1.0 91.9 84.2
16 1.0 1.0 1.0 92.4 85.1

Table 1. Micro AUC(%) for different combinations of non-zero
weights on the Avenue and ShanghaiTech datasets. w1, w2, w3

stand for the weights for continuity judgment, discontinuous lo-
calization and missing frame estimation, respectively. The best
performing results are marked in bold.

be achieved by performing a task alone, joint optimization
allows for more comprehensive learning of features to reach
the optimum(ID 16).

2. Results with Other Backbones
In addition to the I3D network [2] and the multi-task back-
bone [3], we incorporate the proposed proxy tasks with
more backbone, including Unet for frame prediction [5],
architecture with memory modules [4, 9], multi-path net-
work [12] and hierarchical learning network [11]. All im-
plementation details and training parameters are set as in
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20
18

Liu et al. [5] 85.1 - 72.8 -
+ Estimation Task 87.2 88.5 74.3 75.2
+ Three Tasks 88.3 89.2 77.0 77.9

20
19

Gong et al. [4] 83.8 - 71.2 -
+ Estimation Task 86.1 86.8 75.2 75.7
+ Three Tasks 87.8 88.3 76.0 76.9

20
20

Park et al. [9] 88.5 - 70.5 -
+ Estimation Task 89.8 90.7 72.6 73.8
+ Three Tasks 90.6 91.2 75.0 76.2

20
21

Liu et al. [6] 91.1 - 76.2 -
+ Estimation Task [6] 91.5 92.0 78.0 79.1
+ Three Tasks 92.1 92.9 79.2 80.4

20
22

Wang et al. [12] 88.3 - 76.6 -
+ Estimation Task 89.5 89.6 77.9 78.6
+ Three Tasks 90.3 90.3 79.2 80.1

20
23

Sun et al. [11] 92.4 - 83.0 -
+ Estimation Task 92.5 92.5 83.8 84.4
+ Three Tasks 92.9 93.0 85.9 86.2

Table 2. Micro and Macro AUC (%) of different backbone on
Avenue and ShanghaiTech datasets.

the original paper [4, 5, 9, 11, 12]. When incorporating the
proposed proxy tasks, we equally report the performance
of both versions, incorporating only the missing frame es-
timation task and incorporating all tasks. Table 2 shows
the Micro AUC (%) of different backbone on Avenue and
ShanghaiTech datasets.

For Unet[5], architecture with memory modules [4, 9],
and multi-path network [12] incorporating the missing
frame estimation task alone and incorporating all three tasks
achieve significant improvements on both datasets.

For backbone of Liu et al. [6] and hierarchical learning
network [11], incorporating our proposed proxy tasks on
the Avenue dataset achieves only marginal improvement.
This is attributed to the fact that both structures perform
object-centered feature learning, and the motion patterns
and anomaly scales of This is attributed to the fact that
both structures perform object-centric feature learning, es-
pecially since both design many branches of feature learn-
ing with different aspects. And the motion patterns and
anomaly scales the Avenue dataset are relatively homoge-
neous and easy to learn, the way the original training is done
is close to performance saturation. Whereas on the Shang-
haiTech dataset, which has large variations in motion pat-
terns and scales, significant improvement can be achieved
by combining the agent tasks we designed.

3. More Qualitative Results
3.1. Anomaly Score Gap

Although the comparison with the SOTA methods in the
main text highlight the superior performance of our method,

we calculate the gap between average scores of normal and
abnormal frames to validate the superiority of our architec-
ture. The score gap ∆S in dataset D is defined by:

∆S =
∑
V∈D

∑
t∈{t|It∈V}

(2yt − 1)St (1)

where a higher ∆S value indicates a more robust network
for distinguishing normal and abnormal events. As shown
in Table 3, the large score gap validates the effectiveness of
our design.

Method year Avenue ShanghaiTech
Liu et al. [5] 2018 0.275 0.175
Georgescu et al. [3] 2021 0.368 0.235
Wang et al. [12] 2022 0.344 0.182
Zhong et al. [14] 2022 0.352 0.153
Yang et al. [13] 2023 0.362 0.161
Cao et al. [1] 2023 0.360 0.205
Ours 0.380 0.261

Table 3. The GAP ∆S between average anomaly scores for the
normal and abnormal frames. The best performing results are
marked in bold.

3.2. Evaluation of the Generalization Capacity

To demonstrate the generalization capacity, we conduct ex-
periments with proposed framework in a cross-dataset set-
ting [7, 8]. In our experiments, we trained on the Shang-
haiTech dataset, and then validated on the UCSD ped2 and
Avenue datasets. The comparison of our method with the
SOTA methods [7, 8] is shown in Table 4. Our proposed
method can achieve gains of about 2% on various bench-
marks (from 5 shots to 0 shot). In all cases, our method
is more general than the meta-learning-based DPU [7] and
finetune-based rGAN [8].

Source Target Methods 0-Shot 1-Shot 5-shot

Shanghai
Tech

UCSD
Ped2

rGAN [7] 82.0% 91.2% 91.8%
DPU [8] 90.2% 94.5% 94.7%

Ours 92.5% 95.9% 96.6%

Avenue
rGAN [7] 71.4% 76.6% 77.1%
DPU [8] 74.0% 78.9% 80.0%

Ours 76.3% 80.1% 81.8%

Table 4. Comparison of K-shot (K = 0; 1; 5) anomaly detection
under the cross-dataset testing setting. Note that K = 0 represents
the models are only pre-trained without any adaption.

3.3. Running Time

All our experiments are run on a single NVIDIA RTX3090
GPU, and the backbone of the proposed multiscale frame-
work defaults to the I3D network [2]. Since our method
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Figure 1. The comparison of reconstruction error maps for the
”where is Im” and ”whether is Im” tasks.

performs proxy tasks at the frame-level by default instead
of the object-level [3] (Only perform at the object-level for
fair comparisons when using multi-task backbone.), there
is no need to resort to the auxiliary network YOLOv3 [10].
For a video clip from the ShanghaiTech dataset, the entire
framework runs at approximately 42 frames per second. For
reference, real-world surveillance videos are typically saved
at frame rates below 30 FPS.

4. More Visualization Examples

In order to highlight the superiority of the proposed method
on scenarios with small-scale anomalies more intuitively,
we produce a comparison video with the state-of-the-art
method ROADMAP[12]. ROADMAP is a multi-scale
anomaly detection method based on multi-path ConvGRU.
The video for comparison is test video 04-0001 from the
ShanghaiTech dataset, where the first part of the video
shows a small-scale anomaly that occurs in the upper left
portion of the video, and the second part of the video shows
a running and jumping anomaly that occurs in the center
area.

We mark the anomalous frames and anomalous regions
identified by the two methods with red boxes, respectively.
As shown in the video, our method can accurately iden-
tify anomalies in the part of small-scale anomalies while
ROADMAP can only determine a part of the anomalies.

4.1. Visual analysis of discontinuous localization
task

The main challenge in small-scale anomaly detection is the
interference of background noise. Finding where the miss-
ing frame is located in a clip directs the model to focus
on subtle changes between adjacent frames rather than the
background. The comparison of reconstruction error maps
for the tasks ”where is Im” and ”whether Im” are illus-
trated in Fig. 1. It is evident that the ”where is Im” task
enhances the model’s sensitivity to subtle changes. The
model trained using the ”whether Im” task is more suscepti-
ble to background noise. This comparative analysis of visu-
alization results will be incorporated into the final version.
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