
A. Appendix
A.1. Detailed Dataset Description

CREMA-D (Creole Multimodal Affect Database)
CREMA-D is a multimodal dataset designed for emotion
recognition research. It contains audio and video recordings
of actors from the Haitian Creole culture portraying various
emotional states. The dataset is valuable for studying the
cross-cultural aspects of emotion recognition and includes
a range of emotions expressed through speech and facial
expressions.

Kinetic-Sound Kinetic-Sound is a dataset that combines
the fields of computer vision and audio processing. It con-
sists of synchronized video and audio recordings of everyday
objects and actions, providing a rich resource for research
on audio-visual scene understanding and object recognition.
Researchers use Kinetic-Sound to explore how audio and
visual information can complement each other for better
recognition and understanding of real-world scenes.

Food-101 Food-101 is a widely-used dataset for food im-
age classification and recognition. It contains over 100,000
images of 101 different food categories, making it a valu-
able resource for training and evaluating machine learning
models for food recognition tasks. Researchers and develop-
ers use Food-101 to build applications for automated food
identification, dietary analysis, and more.

MVSA (Multimodal Visual Sentiment Analysis) :
MVSA is a dataset designed to study sentiment analysis
in multimedia content. It combines text, image, and audio
data to capture the sentiment expressed in social media posts.
Researchers use MVSA to develop advanced models for
understanding the emotions and sentiments conveyed in mul-
timedia content, which is crucial for applications like social
media monitoring and sentiment analysis in marketing.

IEMOCAP (Interactive Emotional Dyadic Motion Cap-
ture) IEMOCAP is a unique dataset created for research
in emotion recognition and speech processing. It consists of
audio and motion-capture data recorded during natural, emo-
tionally charged conversations between actors. IEMOCAP
is widely used to advance the understanding of emotion in
speech and gesture, as well as for developing emotion-aware
conversational AI systems and therapy applications.

These datasets play crucial roles in advancing research
in their respective fields, providing valuable resources for
developing and evaluating models and algorithms related to
emotion recognition, audio-visual scene understanding, food
recognition, sentiment analysis, and emotion in speech and
gesture.

A.2. Details of Baselines

In this section, we provide a comprehensive overview of
the baseline methods employed in our multimodal learning
framework.

Summation Summation fusion, also known as element-
wise addition, serves as a fundamental technique for integrat-
ing information from diverse modalities. It combines rep-
resentations from different modalities through a straightfor-
ward element-wise summation process. While this method
effectively merges information from multiple sources, it does
so without explicitly modeling interactions between modali-
ties. In the summation method, each modality-specific en-
coder is equipped with a fully connected layer. The input
and output dimensions of this layer correspond to the output
dimension of the encoder and the number of classes, respec-
tively. Subsequently, the unimodal outputs from these fully
connected layers are summed to obtain a fusion output. The
fusion output is then utilized to calculate the loss and update
all parameters of the modality-specific encoders and fully
connected layers.

Concatenation Concatenation fusion involves the concate-
nation of feature vectors from different modalities along a
specific axis. This technique enables the model to perceive
combined information but does not inherently capture cross-
modal interactions. It serves as a foundational approach
for feeding multimodal data into neural networks. In the
concatenation method, a single fully connected layer is em-
ployed. The input dimension of this layer equals the sum
of the output dimensions of all encoders, while the output
dimension corresponds to the number of classes. During
forward propagation, all encoder outputs are concatenated
and passed into the fully connected layer to obtain the fu-
sion output. During backpropagation, the loss computed
using the fusion output and ground truth is used to update
all parameters, including those of the encoders and the fully
connected layer.

Late fusion [14] Late fusion approaches involve process-
ing each modality separately and subsequently combining
the results at a later stage. This method provides flexibility in
handling modalities independently before fusing them, but
may miss capturing early interactions between data sources.
In the late fusion method, multiple fully connected layers
correspond to each modality-specific encoder, similar to the
summation approach. However, in this method, there are
no cross-modal interactions. All encoders and their corre-
sponding fully connected layers are trained independently
on a single modality. The fusion output is calculated as the
average of all unimodal outputs.



FiLM [27] FiLM is an advanced multimodal fusion tech-
nique that introduces condition encoding and feature mod-
ulation. By modulating visual features based on textual
conditions, FiLM enables dynamic adjustments of visual
representations in response to textual inputs. This method
is particularly effective in tasks requiring fine-grained align-
ment between modalities. In the FiLM method, either audio
or text serves as the condition encoder’s input to condition-
ally encode the remaining modalities. The condition encoder
is implemented as a fully connected layer, with its input
dimension matching the output dimension of the modality-
specific encoder. The output dimension of the condition
encoder is twice its input dimension, and the encoding is
split into γ and β components, which are used to modify
the output of other modalities. The modified output is then
appended to a fully connected layer for classification and
loss computation during optimization.

BiGated [19] BiLinear Gated Fusion leverages bilinear
pooling and gating mechanisms to capture intricate interac-
tions between modalities, explicitly modeling cross-modal
correlations. This approach provides a more expressive fu-
sion strategy for capturing nuanced relationships between
different data sources. In the BiGated method, multiple fully
connected layers correspond to each encoder, similar to the
summation approach. Additionally, a fusion layer aggre-
gates the outputs from all modalities, as in the concatenation
method. However, one modality’s hidden state undergoes an
activation function (sigmoid in our experiments) to derive
a gated weight. This weight is used to modulate the other
hidden states before they are appended to the fully connected
layer to obtain the fusion output.

OGM-GE [26] OGM-GE addresses under-optimization
for specific modalities in multimodal learning by modify-
ing the gradients’ values. This approach balances attention
weights for each modality, reducing the impact of less in-
formative modalities on the fusion output during training.
In the OGM-GE method, which is implied in the setting
of concatenation, modality-specific coefficients κu

t are cal-
culated according to the algorithm outlined in the original
paper. These coefficients are then used to scale all gradients
during backpropagation, balancing the optimization of each
modality.

QMF [48] Quality-aware Multimodal Fusion (QMF) is
designed to efficiently fuse various modalities, particularly
in information imbalance situations. Similar to late fusion,
QMF introduces a multimodal loss to learn cross-modal in-
formation and a regularization term to encourage modalities
to pay more attention to challenging samples. In our experi-
ments, we applied QMF similarly to the late fusion setting.

The loss calculation aligns with the methodology described
in the QMF papers.

A.3. Details of experimental setup

A.3.1 Learning with complete modality

To evaluate the effectiveness of our method across diverse
models and datasets, we employed three distinct encoders:

ResNet-18 Based Network We utilized a ResNet-18 based
network for the CREMA-D and KS datasets. The ResNet-18
architecture is a member of the ResNet family, specifically
designed to address the challenge of vanishing gradients
during the training of deep neural networks. It introduces
the concept of residual connections, also known as skip con-
nections or shortcut connections, which facilitate the direct
flow of information across network layers. This alleviates
the vanishing gradient issue, enabling the training of excep-
tionally deep networks. In our experiments, we initialized
the weights of ResNet-18 using the standard initialization
method.

M3AE (Multimodal Multimodal Contrastive Learning
Based Encoder) For the Food-101 and MVSA datasets,
we employed the M3AE encoder. M3AE is a large-
pretrained model designed for both vision and language data,
leveraging multimodal contrastive learning. It has demon-
strated outstanding performance in various downstream tasks.
We initiated the M3AE encoder by loading its base model,
which has been released publicly.

M3AE + CAVMAE In the case of the IEMOCAP dataset,
we adopted a combination of encoders. The acoustic encoder
was based on CAVMAE (Audio-Vision Task Pretrained En-
coder), a large-pretrained model specialized for audio-vision
tasks. For the visual-textual modality, we utilized M3AE.
The weight initialization for the CAVMAE encoder was
performed by loading the pre-trained cavmae-audio model.

In all experiments, we employed a shared head consisting
of a fully connected layer. The input dimension for this
layer was set to 512 for experiments with the base model and
768 for experiments with the large-pretrained model. We
employed the Stochastic Gradient Descent (SGD) optimizer
for all experiments with a momentum value of 0.9. The
initial learning rate was set to 0.001. Learning rate decay
was applied at regular intervals during training, with a decay
ratio of 0.1. In all experiments, we utilized a batch size of
64.

The choice of features varied across datasets and modal-
ities: For the CREMA-D and KS datasets, we utilized the
fbank acoustic feature, while the visual feature consisted of a
concatenation of three transformed images. In the case of the
Food-101, MVSA, and IEMOCAP datasets: Textual Feature:



We employed tokenized text extracted using a BERT-based
model. Visual Feature: For these datasets, the visual feature
was based on transformed images. Acoustic Feature (IEMO-
CAP only): For the IEMOCAP dataset, the acoustic feature
was incorporated into the CAVMAE encoder and consisted
of the fbank feature.

A.3.2 Learning with missing modalities

In our experiments focusing on missing modalities within
the IEMOCAP dataset, we employed a diverse set of feature
extraction models to capture textual, visual, and acoustic
information. Here, we provide detailed descriptions of the
feature extraction models and their respective advantages:

We extracted textual features using BERT (Bidirectional
Encoder Representations from Transformers), a ground-
breaking natural language processing model developed by
Google AI in 2018. BERT revolutionized the field of NLP
by introducing a pre-trained model capable of understand-
ing contextual relationships in both directions (left-to-right
and right-to-left) within a sentence. This bidirectional ap-
proach enables BERT to capture intricate word relationships,
making it highly effective for a wide range of NLP tasks,
including text classification, question-answering, and senti-
ment analysis.

For visual feature extraction, we relied on MANet, an
advanced pre-trained model specializing in visual tasks.
MANet builds upon the success of convolutional neural net-
works (CNNs) by incorporating multi-attention mechanisms.
This unique design allows MANet to efficiently process and
understand visual information by selectively attending to
relevant regions within an image. Consequently, MANet ex-
cels in tasks such as image recognition, object detection, and
scene understanding, enabling it to capture detailed context
and intricate visual relationships.

To extract acoustic features, we utilized Wav2vec, an
innovative pre-trained model developed by Facebook AI in
2019. Wav2vec is specifically designed for speech and audio
processing tasks, offering the capability to directly convert
raw audio waveforms into meaningful vector representations.
This model has significantly enhanced the accuracy and
efficiency of various audio-related applications, including
automatic speech recognition, voice activity detection, and
audio classification.

For all methods, we employed modality-specific encoders
consisting of a sequence of three fully connected layers.
The input dimensions for the acoustic, visual, and textual
modalities were set to 512, 1024, and 1024, respectively.
The embedding size for all fully connected layers was fixed
at 128. The classifier utilized in all methods was a fully
connected layer. Both the input and output dimensions of the
classifier were set to 128 and corresponded to the number
of classes specific to the dataset. The batch size for all

experiments was set to 64. We initiated training with an
initial learning rate of 0.001, which was reduced in every
iteration with a decay ratio of 0.1.

This comprehensive setup allowed us to explore the im-
pact of missing modalities in the IEMOCAP dataset while
leveraging state-of-the-art feature extraction models for tex-
tual, visual, and acoustic data. The combination of BERT,
MANet, and Wav2vec, along with carefully tuned network
architectures and training parameters, enabled us to conduct
rigorous and insightful experiments in multimodal learning.

A.4. Full Results

A.4.1 Full result of complete multimodal learning

A.4.2 Full Results of Ablation Studies

In Table 6, we report the full results of ablation studies with
95% standard deviation.

A.4.3 Full Results of CLIP



Table 5. The full results on audio-video (A-V), image-text (I-T), and audio-image-text (A-I-T) datasets. Both the results of only using a
single modality and the results of combining all modalities ("Multi") are listed. We report the average test accuracy (%) of three random
seeds. The best results and second best results are bold and underlined, respectively.

Type Data Sum Concat Late Fusion FiLM BiGated OGM-GE QMF MLA (Ours)

A-V

CREMA-D
Audio 54.14± 0.92 55.65± 0.82 52.17± 1.12 53.89± 0.75 51.49± 1.28 53.76± 0.98 59.41± 0.71 59.27± 1.23
Video 18.45± 1.07 18.68± 0.76 55.48± 0.71 18.67± 1.21 17.34± 1.11 28.09± 1.17 39.11± 1.03 64.91± 1.10
Multi 60.32± 0.78 61.56± 0.91 66.32± 1.08 60.07± 1.25 59.21± 1.14 68.14± 0.79 63.71± 1.12 79.70± 0.87

KS
Audio 48.77± 0.95 49.18± 0.76 47.87± 1.10 48.67± 0.83 49.96± 1.21 48.87± 1.05 51.57± 1.03 54.67± 0.92
Video 24.53± 1.12 24.67± 1.07 46.76± 0.85 23.15± 0.98 23.77± 1.14 29.73± 1.06 32.19± 0.92 51.03± 1.09
Multi 64.72± 0.97 64.84± 1.05 65.53± 0.89 63.33± 0.76 63.72± 1.13 65.74± 1.08 65.78± 0.97 71.35± 1.22

I-T

Food-101
Image 4.57± 0.88 3.51± 1.22 58.46± 1.03 4.68± 0.97 14.20± 1.18 22.35± 1.27 45.74± 1.09 69.60± 0.89
Text 85.63± 1.14 86.02± 1.05 85.19± 1.21 85.84± 0.92 85.79± 1.10 85.17± 1.09 84.13± 1.27 86.47± 0.86
Multi 86.19± 0.86 86.32± 1.18 90.21± 1.02 87.21± 1.05 88.87± 0.88 87.54± 1.03 92.87± 1.01 93.33± 0.92

MVSA
Text 73.33± 1.03 75.22± 0.92 72.15± 1.07 74.85± 0.98 73.13± 1.08 74.76± 0.87 74.87± 1.15 75.72± 0.79

Image 28.46± 1.12 27.32± 1.09 45.24± 0.97 27.12± 1.18 28.15± 0.88 31.98± 1.03 32.99± 1.09 54.99± 1.12
Multi 76.19± 1.01 76.25± 0.95 76.88± 0.82 75.34± 1.07 75.94± 0.88 76.37± 0.98 77.96± 1.06 79.94± 0.97

A-I-T IEMOCAP

Audio 39.79± 1.08 41.93± 0.89 43.12± 0.97 41.64± 1.06 42.23± 0.88 41.38± 1.13 42.98± 0.95 46.29± 1.02
Image 29.44± 0.97 30.00± 0.88 32.38± 0.92 29.85± 1.06 27.45± 1.08 30.24± 1.02 31.22± 1.07 37.63± 0.78
Text 65.16± 0.88 67.84± 0.97 68.79± 1.07 66.37± 0.95 65.16± 1.08 70.79± 1.03 75.03± 0.79 73.22± 1.09
Multi 74.18± 1.03 75.91± 0.92 74.96± 0.97 74.32± 1.12 73.34± 1.05 76.17± 1.01 76.17± 0.95 78.92± 1.07

Table 6. We report the test accuracy percentages (%) on the IEMOCAP dataset using three different seeds, while applying varying modality
missing rates to audio, image, and text data. The best results are highlighted in bold, while the second-best results are underlined.

Method
Modality Missing Rate (%)

10 20 30 40 50 60 70

Late Fusion 72.95± 1.12 69.06± 0.88 64.89± 1.25 61.09± 0.99 56.48± 1.18 52.41± 1.01 45.07± 1.21
QMF 73.49± 1.10 71.33± 1.27 65.89± 0.78 62.27± 0.95 57.94± 1.07 55.60± 0.84 50.25± 1.09

CCA 65.19± 0.95 62.60± 1.19 59.35± 0.88 55.25± 1.23 51.38± 1.05 45.73± 1.27 30.61± 1.10
DCCA 57.25± 1.28 51.74± 1.01 42.53± 1.29 36.54± 1.18 34.82± 0.79 33.65± 1.07 41.09± 1.24
DCCAE 61.66± 1.13 57.67± 1.22 54.95± 1.06 51.08± 1.01 45.71± 0.87 39.07± 0.98 41.42± 1.28
AE 71.36± 0.94 67.40± 0.79 62.02± 1.18 57.24± 0.94 50.56± 0.77 43.04± 0.96 39.86± 0.82
CRA 71.28± 1.19 67.34± 1.04 62.24± 1.03 57.04± 0.92 49.86± 1.15 43.22± 0.99 38.56± 1.22
MMIN 71.84± 0.97 69.36± 1.05 66.34± 1.11 63.30± 1.10 60.54± 1.17 57.52± 1.13 55.44± 1.06
IF-MMIN 71.32± 0.78 68.29± 0.98 64.17± 1.01 60.13± 1.19 57.45± 1.12 53.26± 1.22 52.04± 0.91
CPM-Net 55.29± 0.83 53.65± 0.96 52.52± 1.29 51.01± 0.94 49.09± 1.04 47.38± 1.25 44.76± 0.88
TATE 67.84± 1.02 63.22± 1.08 62.19± 0.98 60.36± 1.06 58.74± 1.21 57.99± 1.03 54.35± 1.07

MLA (Ours) 75.07± 1.04 72.33± 1.16 68.47± 1.22 67.00± 0.98 63.48± 0.87 59.17± 0.92 55.89± 1.03

Table 7. Results on the Food-101 dataset achieved by changing the
encoders to the CLIP pre-trained model. We report the average test
accuracy (%) from three different seeds.

Method
Food-101

Image Text Multi

CLIP 63.07± 0.12 83.98± 0.08 93.07± 0.08
CLIP + MLA (Ours) 72.22± 0.10 85.34± 0.06 93.47± 0.04


