
Supplementary Material for
Outdoor Scene Extrapolation with

Hierarchical Generative Cellular Automata

A. Additional Analysis

In this section, we include additional results that highlight
the practical aspects of the proposed method.

A.1. Evaluation on Real-World Data

A.1.1 Waymo-Open

We first provide further evaluations on the sim-to-real per-
formance of hGCA using Waymo-Open [17] dataset. As
stated in the main manuscript, abundant real-world AV data
suffers from various noises and limited measurement ranges.
Most importantly, we do not have the ground truth shapes for
our task of shape extrapolation, which challenges systematic
analysis. This section provides sub-optimal quantitative mea-
sures and comprehensive qualitative results to demonstrate
that we can faithfully generate realistic scenes given partial
and noisy real-world measurements.

As a means for quantitative evaluation, we use the accu-
mulated scans as a pseudo ground truth as in semantic scene
completion works [1, 20, 21] and analyze its performance
with LiDAR ReSim and IoU as demonstrated in our results of
synthetic datasets. We randomly chose 202 scenes and used
five scans as input. Then, the generated scene is compared
against accumulated data using all scans. While the accumu-
lated scans are denser variations of the given measurement,
they are noisy and highly incomplete measurements in a
confined height range, as shown in Fig. 1, 2, 3 and 4. We
devise the evaluation metrics to adapt to the limitation of the
reference data. When computing the LiDAR ReSim score,
we simulate LiDAR at the same height as the input LiDAR
scan instead of using a higher elevation LiDAR. Likewise,
we compute IoU only on regions visible from LiDAR scans
as evaluated in semantic scene completion [1, 20, 21]. There-
fore, neither of these metrics assesses the performance of
extrapolation beyond the LiDAR height range and occlusion.

Table 1 reports the performance on the shape completion
within the measurement range, only trained with limited
synthetic content. Similar to synthetic results, hGCA outper-
forms all baselines in LiDAR ReSim and IoU by a margin.
The results indicate that our completion is closer to the dense

Method
Represe
-ntation

LiDAR ReSim IoUmin. ↓ avg. ↓ TMD ↑
SCPNet 20cm 5.57 - 52.33
SG-NN 10cm 5.81 - 49.83
GCA 20cm 5.73 6.04 1.07 51.91
GCA + Planner 20cm 5.48 5.57 0.70 52.26

hGCA 10cm 4.65 4.73 0.77 52.25
implicit 4.52 4.50 0.97 56.50

Table 1. Quantitative results on Waymo with 5 scans given as input.
All results except IoU are multiplied by 10 in meter scale. LiDAR
Resim evaluates the fidelity of completion and TMD measures the
diversity of generation. Unlike synthetic results, LiDAR ReSim
uses same elevation angle as the input and IoU is computed with
accumulated scans.

measurements of real-world geometry than existing methods.
Interestingly, the IoU of the continuous completion outper-
forms the initial voxel occupancy (10cm) in the real-world
analysis in Table 1 whereas the voxel occupancy achieves
higher IoU values in our synthetic experiments (Table 1 of
the main paper). Recall that our high-resolution upsampling
sometimes fails to create a narrow structure, as unsigned
distance fields may obscure the exact zero-level location in
high-frequency details. We observe that the accumulated
scans also experience similar ambiguity due to the inherent
noise in the real-world measurement. As the noisy scans
serve as the ground truth, the possible misalignment due to
the thick implicit generation may be evaluated as a faithful
generation. Such a phenomenon again shows difficulties
in the quantitative evaluation of generative models on real-
world datasets.

We further visualize various generation results observed
from diverse viewpoints in Fig. 1, 2, 3 and 4. Despite the
limited measurement range and noisy input, our method
can extrapolate the input measurement into large-scale real-
world scenes in a scalable way. Figure 2, 3 and 4 also show
comparison against other baselines. Deterministic baselines
(SCPNet [20] and SG-NN [5]) exhibit conservative behavior,
leaving holes in the ground and partially complete build-
ings or trees. Naïve GCA, while it is a generative baseline,

1

Figure 1. Additional completion visualizations on real-world Waymo-Open dataset on 100m scenes. Yellow spheres indicate input. hGCA is
spatially scalable, completing this whole scene (100 meters) at high resolution on a single 24GB GPU without additional tricks. hGCA can
even extrapolate hills (bottom) from real-world scans.

In
pu

t
A

cc
.s

ca
ns

SC
PN

et
SG

-N
N

G
C

A
(2

0c
m

)
hG

C
A

Figure 2. Additional visualizations on real-world Waymo-open dataset. hGCA exhibits great sim-to-real performance, while naive GCA
suffers from inconsistency (pink).

In
pu

t
A

cc
.s

ca
ns

SC
PN

et
SG

-N
N

G
C

A
(2

0c
m

)
hG

C
A

Figure 3. Additional visualizations on real-world Waymo-open dataset.

In
pu

t
A

cc
.s

ca
ns

SC
PN

et
SG

-N
N

G
C

A
(2

0c
m

)
hG

C
A

Figure 4. Additional visualizations on real-world Waymo-open dataset.

Sparse Scene Sparse Car

Method 5% 10% 50% 100% 5% 10% 50% 100%

SCPNet (20cm3) 10.44 2.33 2.28 2.25 2.38 2.30 2.37 2.25
JS3CNet (20cm3) 96.59 112.65 170.16 2.40 2.59 2.52 2.43 2.4
SG-NN (10cm3) 133.61 133.28 184.4 1.96 2.45 2.19 2.03 1.96
GCA (20cm3) 2.47 2.27 2.44 2.27 2.38 2.51 2.38 2.27

hGCA (10cm3) 2.41 2.11 1.77 1.71 2.30 2.08 1.82 1.69

Table 2. Chamfer distance between the ground truth geometry
and completions by varying sparsity. Sparse scene and sparse
car indicates a scenario where we sparsify the regions of entire
scene (including ground) and only the car, respectively. Chamfer
distance above ground are reported and we report average distance
of k = 3 generations for generative models (GCA, hGCA). hGCA
generalizes well to sparse, novel data.

suffers from inconsistent generation, which results in over-
lapping structures (pink boxes in Fig. 2). On the other hand,
hGCA can generate unseen geometry while maintaining
global consistency in various real-world settings. For exam-
ple, the input shown in the right column of Fig. 2 misses a
significant portion of the buildings as a fence occludes them.
Nonetheless, hGCA faithfully generates detailed facades of
buildings.

A.1.2 nuScenes

To test generalization to a new sensor configuration, we show
results on the nuScenes dataset in Fig. 5. While 64-beam
LiDAR was used in Waymo and our synthetic training set,
nuScenes scans were obtained using 32-beam LiDAR, which
is a significant domain shift. Nevertheless, hGCA general-
izes to nuScenes out-of-the-box and is robust to the domain
shift. We observe some failures on nuScenes (bottom of
Fig. 5), across the street, where the model hallucinates struc-
tures in extremely sparsely scanned regions. We speculate
that training with simulated 32-beam LiDAR scans as in-
put will enhance the quality of completion by reducing the
domain gap for sparse inputs.

A.2. Generalization to Various Input Conditions

As partially demonstrated in sim-to-real results, our gener-
ative pipeline can robustly handle input variations not ob-
served in the training data. This section provides additional
quantitative evaluations of shapes generated from different
input conditions.

Input Sparsity. We first demonstrate the performance of
hGCA given inputs of varying densities of the entire scene.
We place a three-wheeler1, verified to be unseen from train-
ing data, in the center on a flat ground and simulate LiDAR
scans captured from a simple trajectory. Then, we vary the
input density by randomly sampling 5%, 10%, and 50% of

1Clickable link to asset on sketchfab.com

the accumulated scans of two settings: the whole scene and
only the car.

We report Chamfer distance between the completion and
the ground truth in Table 2 and visualize the completions
on both settings in Fig. 6 and 7. hGCA generates the most
accurate geometry compared to all baselines in every sce-
nario according to Table 2. The completions of sparse scans
for both the scene and the car show that vanilla GCA and
hGCA still generate reasonable completions for a novel ob-
ject. Because other baselines (SCPNet [20], JS3CNet [21],
SG-NN [5]) utilize global features, they create random ar-
tifacts when the input is a severely sparse scene (5% and
10% in Fig. 6). Such challenging scenarios are effectively
handled with local generations of GCAs, demonstrating su-
perior performance on generalization. As it is impossible
to control the input quality or provide accurate object-wise
segmentation in actual scans, the robustness of GCA may
pave the way toward practical large-scale scene generation.

Varying Number of Input Scans In addition to random
samples, we test a more realistic variation of densities, col-
lecting simulated scans exhibiting occlusions. We train mod-
els with five and ten scans on synthetic scenes (Karton City
and CARLA [6]) and evaluate results on inputs with differ-
ent numbers of scans. hGCA can also stably create scenes
given various numbers of input scans.

We report quantitative results in Table 3 and visualize
random samples in Fig. 13 for the extreme case, where only
a single scan is provided. Quantitatively, hGCA outperforms
other baselines by a large margin in LiDAR Resim and shows
competitive (second best) performance on IoU and Street
CD, where the best method differs depending on the dataset.
While hGCA demonstrates superior generalization perfor-
mance to a single scan compared to other baselines, it suffers
from degradation with the lack of evidence in the input. For
example, in the second column of Fig. 13, the input scan
provided in a limited height range results in the ambiguity
between the facade of the building and the fence.

We also test our methods by completing dense accumu-
lated scans. For CARLA, we accumulated 80 nearby scans
from a random pose; for Karton City, we gathered all the
scans, which have an average of 132 scans, as input. We
report quantitative results in Table 4 and visualize comple-
tions randomly in Fig. 16. hGCA outperforms previous
methods on all reconstruction methods in Karton City and
performs competitively (second best) in CARLA. While SG-
NN reports best results on CARLA, we observe that SG-NN
struggles to create scenes beyond the sensor range, such as
faces of buildings (first column) or trees or cars (second col-
umn) in Fig. 16. In contrast, hGCA successfully generates
reasonable geometry in our qualitative examples.

https://skfb.ly/osHxF

Figure 5. Visualizations on real-world nuScenes dataset on 100m scenes. Yellow spheres indicate input. hGCA is spatially scalable,
completing this whole scene (100 meters) at high resolution on a single 24GB GPU without additional tricks.

CARLA Karton City

Method Representation High LiDAR ReSim IoU High LiDAR ReSim IoU Street CD
min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑

ConvOcc implicit 21.73 - 12.05 16.6 - 22.05 25.20 -
SCPNet 20cm 9.46 - 38.94 8.23 - 55.01 7.37 -

JS3CNet 20cm 8.70 - 43.04 7.20 - 57.05 7.65 -
10cm 8.49 - 32.78 6.33 - 62.21 5.48 -

SG-NN 10cm 9.53 - 37.55 7.11 - 60.62 6.44 -

GCA 20cm 8.37 8.82 1.89 39.07 5.60 5.86 1.40 63.69 6.17 7.47 3.21
10cm 9.16 10.23 4.14 34.73 7.37 7.77 2.14 57.33 8.00 9.18 3.89

cGCA implicit 9.27 10.10 4.45 31.56 6.63 7.06 3.01 47.33 10.09 11.83 7.99

hGCA 10cm 7.97 8.25 1.19 40.05 5.16 5.29 0.91 63.29 6.27 6.93 1.43
implicit 7.94 8.22 1.39 40.47 5.18 5.30 0.96 59.97 5.99 6.67 1.27

input 12.72 - 19.26 12.87 - 21.77 10.14 -

Table 3. Quantitative results on CARLA and Karton City with a single scan given as input. All results except IoU are multiplied by 10 in
meter scale. LiDAR Resim and Street CD evaluates the fidelity of completion and TMD measures the diversity of generation. High LiDAR
Resim uses high elevation LiDAR to evaluate the extrapolation. IoU is computed with ground truth geometry.

In
pu

t
SC

PN
et

JS
3C

N
et

SG
-N

N
G

C
A

(2
0c

m
)

hG
C

A

5% Input 10% Input 50% Input 100% Input

Figure 6. Ablation study on a novel three-wheeler completion by varying density of 5 scans. Inset shows wide range view of the completion.
Locality of GCA’s enable generalization to sparse input producing stable completions, while method that only utilize global features fail.

In
pu

t
SC

PN
et

JS
3C

N
et

SG
-N

N
G

C
A

(2
0c

m
)

hG
C

A

5% Input 10% Input 50% Input 100% Input

Figure 7. Ablation study on a novel three-wheeler completion by varying density of 5 scans only for the car asset.

CARLA Karton City

Method Representation High LiDAR ReSim IoU High LiDAR ReSim IoU Street CD
min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑

ConvOcc implicit 13.4 - 17.81 8.35 - 27.36 13.4 -
SCPNet 20cm 6.03 - 52.10 4.18 - 75.61 3.09 -

JS3CNet 20cm 6.41 - 54.32 5.37 - 65.32 3.59 -
10cm 5.49 - 48.15 3.45 - 75.44 1.93 -

SG-NN 10cm 4.20 - 59.17 3.18 - 76.76 1.84 -

GCA 20cm 5.31 5.54 1.45 56.18 3.79 3.83 0.40 79.76 2.64 2.91 0.76
10cm 5.35 5.85 1.94 50.97 3.17 3.24 0.64 77.47 2.02 2.28 0.84

cGCA implicit 6.43 6.82 2.34 40.72 3.92 3.97 0.67 66.86 3.00 3.28 1.36

hGCA 10cm 4.54 4.64 0.84 58.78 2.95 2.98 0.35 81.87 1.73 1.84 0.47
implicit 4.36 4.46 0.89 56.85 2.89 2.92 0.39 75.48 1.54 1.66 0.38

input 5.68 - 45.77 5.09 - 62.36 5.58 -

Table 4. Quantitative results on CARLA and Karton City with a many scans (CARLA: 80 scans, Karton City: average of 132 scans) given as
input. All results except IoU are multiplied by 10 in meter scale. LiDAR Resim and Street CD evaluates the fidelity of completion and TMD
measures the diversity of generation. High LiDAR Resim uses high elevation LiDAR to evaluate the extrapolation. IoU is computed with
ground truth geometry.

(a) Input (b) Completion (c) Rough dense occupancy (d) PCA visualizations of BEV feature

Figure 8. Planner with zr = 4 visualization. From left to right: 5 scan input from Karton City, completion (20cm3 resolution), rough dense
occupancy Or from planner, BEV feature fBEV visualization using PCA.

A.3. Planner Feature Visualization

For further understanding of the planner, we provide visu-
alizations of outputs and features of planner. Fig. 8 shows
the input, completion of GCA equipped with planner, rough
dense occupancy Or of planner, and PCA visualizations of
BEV feature. For the PCA visualization, we project the
2D BEV features of the planner to RGB using the first 3
principal axes of PCA. We observe that the final completion
follows the rough dense occupancy prediction of the planner.
This demonstrates that the planner acts as a memory that per-
sists through the Markov process of GCA and plans ahead

persisting BEV feature solely with initial state s0. Also, we
observe that BEV feature learns some global context that
distinguishes some semantic classes trained without any se-
mantic supervision. We presume that checkerboard artifacts
arise due to deconvolution layers of unet [11].

A.4. Effects of LiDAR noise

We investigate the effects of input LiDAR noise on training
data. During training on synthetic data, we add Gaussian
noise of standard deviation 0.01 in meter scale to the coordi-
nates of each points and add noise to the pitch angle of the
pose with standard deviation 0.02 in degree scale to simulate

(a) Input (b) Trained with noise (c) Trained without noise

Figure 9. Completion visualization on Waymo-Open dataset with and without noise. From left to right: input, completion trained with noise,
completion trained without noise. Adding noise during training with synthetic data produces cleaner completions on real-world data.

CARLA Karton City

Method Representation High LiDAR ReSim IoU High LiDAR ReSim IoU Street CD
min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑

ConvOcc implicit 14.45 - 14.66 9.97 - 25.32 16.91 -
SCPNet 20cm 6.28 - 54.20 4.75 - 70.83 3.29 -

JS3CNet 20cm 6.30 - 52.76 5.16 - 64.93 3.30 -
10cm 4.87 - 54.80 3.88 - 71.16 2.48 -

SG-NN 10cm 4.76 - 54.99 3.84 - 72.82 2.38 -

GCA 20cm 5.63 5.87 1.24 55.63 3.95 4.02 0.44 77.44 2.79 3.09 0.74
10cm 6.20 6.71 2.77 45.00 3.53 3.69 1.03 71.61 2.41 3.27 2.02

cGCA implicit 6.50 6.96 2.62 33.21 4.28 4.46 1.33 60.42 2.7 3.86 2.35

hGCA 10cm 4.62 4.75 0.70 56.41 3.17 3.21 0.45 77.85 1.90 2.02 0.53
implicit 4.71 4.83 0.79 55.20 3.18 3.22 0.51 72.70 1.65 1.77 0.41

input 6.14 - 36.63 6.76 - 39.51 5.41 -

Table 5. Quantitative results on CARLA and Karton City with 5 scans given as input, both trained and evaluated without noise. All results
except IoU are multiplied by 10 in meter scale. LiDAR Resim and Street CD evaluates the fidelity of completion and TMD measures the
diversity of generation. High LiDAR Resim uses high elevation LiDAR to evaluate the extrapolation. IoU is computed with ground truth
geometry.

the LiDAR noise produced in data acquisition in real-world.
Fig. 9 visualizes the completion of hGCA with and without
adding noise during training. We observe that adding noise
is crucial in terms of fine sim-to-real generalization, espe-
cially on the ground. While we simulated the LiDAR noise
with simple ray-casting and Gaussian noises, one could fur-
ther reduce sim-to-real generalization by employing more
sophisticated noise, such as [9].

For completeness, we report quantitative results com-
pared to existing methods without adding noise during both
training and validation in Table 5 and 6. Similar to results
with noise, hGCA outperforms baselines on reconstruction
metrics, demonstrating the superior extrapolation perfor-
mance of hGCA.

A.5. Space and Time Complexity

In this section, we further analyze space and time complexity
of our model. We first investigate the GPU memory usage
for hGCA. In Table. 7, we report the GPU memory require-
ments by varying the completion size in one Waymo scene,
visualized in top of Fig. 1. Given an input of size 40 ×w
meters, we perform 3 completions and report the maximum
GPU memory usage for the coarse completion and the up-
sampling module. We find that hGCA can scalably generate
fine geometry up to 40 × 120 meters without any tricks on

a single 24GB GPU, demonstrating the superior scalability
of hGCA by only employing efficient sparse convolutions
and planner. We also observe that only 4.8GB is required for
the coarse completion on 120 meter scene, demonstrating
the efficacy of the planner module. While our ablation study
was conducted on only a single scene, we find that GPU
memory usage can vary heavily depending on a scene.

For time complexity, we find that coarse completion of
our method takes 3 seconds and upsampling takes about 10
seconds (including IO) to create the final mesh in CARLA
with 3090 GPU. Indeed our method is slow, whereas other
single inference methods (SCPNet [20]) typically take
around 0.1 seconds on A100 GPU to create the comple-
tion in 20cm voxel resolution. We expect faster inference
using half-precision or more recently developed sparse con-
volution libraries, such as torchsparse [18], but we leave it
to future work.

B. Dataset
B.1. Karton City

Karton City is a synthetic city comprised of 20 blocks, ob-
tained from the Turbosquid marketplace2 for 3D asset. We
split 20 blocks into 12/3/5 train/val/test splits and re-combine

2Clickable link to asset on turbosquid.com

https://www.turbosquid.com/3d-models/3d-karton-city-2-model-1196110

CARLA Karton City

Method Representation High LiDAR ReSim IoU High LiDAR ReSim IoU Street CD
min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑ min. ↓ avg. ↓ TMD ↑

ConvOcc implicit 13.67 - 15.11 9.00 - 26.12 15.24 -
SCPNet 20cm 5.90 - 56.88 4.29 - 74.84 2.83 -

JS3CNet 20cm 6.30 - 52.76 4.99 - 66.63 3.02 -
10cm 4.41 - 58.38 3.40 - 74.32 1.99 -

SG-NN 10cm 4.31 - 58.05 3.20 - 76.52 1.84 -

GCA 20cm 5.46 5.65 1.09 58.12 3.81 3.86 0.31 81.02 2.62 2.88 0.62
10cm 5.68 6.21 2.45 48.27 3.08 3.19 0.69 76.54 1.94 2.49 1.38

cGCA implicit 6.26 6.75 2.45 35.16 4.00 4.13 1.00 63.79 1.87 2.62 1.46

hGCA 10cm 4.28 4.39 0.67 59.00 2.96 2.99 0.34 81.34 1.62 1.69 0.44
implicit 4.36 4.47 0.75 57.34 2.96 2.99 0.40 75.34 1.38 1.46 0.33

input 5.19 - 44.02 5.33 - 49.89 4.56 -

Table 6. Quantitative results on CARLA and Karton City with 10 scans given as input, both trained and evaluated without noise. All results
except IoU are multiplied by 10 in meter scale. LiDAR Resim and Street CD evaluates the fidelity of completion and TMD measures the
diversity of generation. High LiDAR Resim uses high elevation LiDAR to evaluate the extrapolation. IoU is computed with ground truth
geometry.

method 40m 60m 80m 100m 120m

Coarse completion 2.8 3.1 3.6 4.4 4.8
Upsampling 5.8 7.0 10.2 12.8 15.7

Table 7. Maximum GPU usage for 40 × w meter completion on
one Waymo scene (top visualization in Fig 1). w denotes the width
of the completion in the first row of the table and the unit of GPU
memory is GB.

4 blocks in each split randomly to generate 300/30/60 unique
train/val/test scenes of size 140 × 140 meters. Of the
12/3/5 split, 7/2/3 are city blocks and 5/1/2 are suburban
blocks. For realistic environment of scenes we re-combine
city and suburban blocks separately, and generate 200/20/40,
100/10/20 scenes for train/val/test splits of city and suburban
scenes, respectively, which we visualize in Fig. 10. We place
ShapeNet [2] cars on each side of the main street to simulate
parked cars. The number of cars on each side of the street
follow a Poisson distribution with lambda 2, with maximum
7 cars. We uniformly distribute the location of the cars and
move them if collisions occur. The cars placed on the street
follow the dataset split from [22] and remove meshes that
contain unused vertices which makes it hard place the cars
in the desired location, thus having total of train/val/test
split of 2383/339/670 cars. For each scene, we run three
simple trajectories visualized in Fig. 10 and randomly se-
lect 4615/30/180 center poses used for train/val/test split,
respectively. For each center pose, we create accumulated
5/10 scans for input by accumulating the scans from the
center pose and 4/9 other poses, resepectively. For obtaining
ground truth implicit function, we sample 4,000,000 points
from ground truth mesh with random noise variance 0.03 and
0.1 in meter scale, total of 8,000,000 point-distance pairs.

Figure 10. Karton City visualization. City (top) and suburb (bot-
tom) scenes are visualized with three simple trajectories (red, yel-
low, green) for simulating a drive.

B.2. CARLA

CARLA [6] is an open source driving simulator with di-
verse environments. We use 5/1/1 towns as train/val/test split
with randomly placed static vehicles and run 10 drives for
each town to obtain the scans. For each town, we run 10
drives and randomly select 3500/30/180 center poses used

for train/val/test split, respectively. For each center pose, we
create accumulated 5/10 scans for input by accumulating
the scans from the center pose and 4/9 other nearby poses,
respectively. In CARLA, obtaining ground truth mesh is
non-trivial. Therefore, we leverage extra LiDAR sensors
other than the LiDAR sensor to collect input scans, to obtain
the ground truth geometry. We additionally place 5 LiDAR
sensors with high elevation angle, having relative offsets of
(0, 0, 0), (0, -9.6, 3), (0, 9.6, 3), (0, -19.2, 3), (0, 19.2, 3) me-
ters from the position of LiDAR sensor placed on simulated
ego-vehicle to collect input scans, where x-axis and z-axis
refer to the front and up direction of the ego-vehicle. We ob-
tain ground truth surface points by accumulating points from
scans acquired from additional LiDAR sensor, visualized
in top of Fig. 11. For obtaining implicit function, we sam-
ple 4,000,000 points from ground truth surface points with
random noise variance 0.03 and 0.1 in meter scale, total of
8,000,000 point-distance pairs. The distance for each points
are computed with nearest neighbor against the ground truth
surface, since ground truth mesh is not available.

B.3. Waymo-Open

Waymo-Open [17] is a real world dataset for autonomous
driving containing sequence of LiDAR scans from a ego-
vehicle drive. We randomly sampled 202 scenes and selected
3 center poses for each scene to evaluate the quantitative met-
rics. For each center pose, we create accumulated scans that
serve as input by accumulating the scans from the center pose
and 4 other poses within 50 meters. We remove dynamic
objects from the point clouds using annotated bounding box
tracks for both input and accumulated point clouds. Due
to noisy dynamic label annotations, some sparse dynamic
points lie after bounding box filtering. Thus, we further per-
form erosion to the accumulated points in voxel resolution
of 10cm3.

B.4. Lidar Simulation

For all the experiments, we simulate synthetic LiDAR using
the LiDAR beam angle and rotation-speed parameters from
the Waymo-Open dataset [17]. The Waymo LiDAR captures
full 360 degrees and results in range image dimension of
64 × 2650 pixels. For details on the sensor specification
see [16]. To simulate LiDAR on Karton City, we generate
a curve by interpolating the ego-vehicle poses and simulate
a rotating beam along this curve. This simulation, thus
correctly captures rolling shutter effects. To obtain ground
truth points in CARLA, we use 512 channels LiDAR with
field of view (-30°, 30°) and range of 75 meters.

Figure 11. Visualization of CARLA dataset. Top: Ground truth sur-
face points obtained from additional sensors. For visualization of
density, we intentionally render with low density. Bottom: Decoded
implicit function for supervising upsampling module. Inconsistent,
sparse regions (yellow) lead upsampling module to unstable train-
ing. Thus, to remove sparse regions for supervision, we train only
on regions visible from the street, which may be incomplete (pink),
but provide dense and accurate geometry for supervision. However,
upsampling is a local operation and upsampling stage of hGCA can
be trained with incomplete data.

C. Implementation Details

C.1. hierarchical Generative Cellular Automata

Training Upsampling Module. We train the upsampling
module by minimizing the log-likelihood of the data distri-
bution, which we defer to cGCA [24] for further details. We
train on synthetic data by combining CARLA and Karton
City like other methods. However, as mentioned in Sec. B.2,
obtaining ground truth mesh is difficult for CARLA, and
while the ground truth points obtained from additional sen-
sors may be dense enough for 10cm3 voxel resolution, we
observe sparse surface points in occluded regions from the
street, such as interiors of the building (Fig. 11). Naive train-
ing of upsampling module with sparse surface points led
to unstable training of local implicit latent feature, where
upsampling results varied inconsistently depending on train-
ing step. Therefore, for training the upsampling module on
CARLA, we supervise with ground truth augmented state
x on regions visible from the road, as visualized in bottom
of Fig. 11, which tend to be dense. We observed that the
upsampling module can generalize to complete scenes even
with training on incomplete ground truth, since upsampling
is a local operation. During training, we train on combined
CARLA and Karton City dataset with rate 15% and 85%,
which led to stable training.

Neural Network Architecture. For sparse convolution
network of our coarse completion and upsampling module,
we employ the same MinkowskiUNet [3, 14] as in GCA [23]
and cGCA [24], respectively. We additionally append 3D
positional encoding with 128 dimension to the features of
the input sparse tensor. For planner module, local point net
consists of a fully connected layer that transforms the normal-
ized coordinates to 32-dimension feature followed by 3 fully
connected residual block and another fully connected layer
with a 32-dimension feature output. The residual block con-
sists of 2 fully connected layers with 32 hidden dimensions.
After the local pointnet, we add 2D positional encoding to
the features and pass it through a 2D UNet3 [14] to obtain a
2D feature of dimension 128. Lastly, we employ 5 convolu-
tional blocks, which consists of two convolutions of kernel
size 3, for obtaining 4 SPADE [12] features that compute the
mean and variance per pillar for denormalization and one
rough occupancy prediction.

Other Details. We use MinkowskiEngine [3] for sparse
convolutions. For all GCAs we use the infusion scheduler of
αt = 0.15+ 0.005t, and obtain the last state with additional
maximum likelihood estimation instead of randomly sam-
pling. We use Adam [7] optimizer with constant learning
rate 5e-4 and clip gradient with maximum norm of 0.5. For
our coarse completion model, we use batch size of 6 and
for the upsampling module, we crop a scene into quarters
and use batch size of 3. We train the low-resolution GCA
attached with planner for 400k steps and upsampling cGCA
for 300k steps which takes roughly 5/4 days, respectively,
with a single 3090 GPU. Note that the two models can be
trained independently.

C.2. Baselines

Generative Celluar Automata [23, 24]. We use the official
implementation released from the authors4. For fair compar-
ison, we use the same hyperparameters as our model. We
use cGCA of voxel size 20cm3.

Convolutional Occupancy Networks [15] We use the
3D grid resolution of 64 version from the official implemen-
tation released from the authors5. For obtaining occupancy
representation, since we cannot obtain watertight mesh for
neither Karton City nor CARLA, we make occupancy for
point in the sampled point-distance pairs that have distance to
surface below 5cm. We additionally sample 100,000 points
in the block range uniformly to create unoccupied points.

SG-NN [5]. We compare with the state-of-the-art indoor
scene completion network. We use the official implemen-
tation released from the authors6. We use the SG-NN to
predict the occupancy in 10cm3 voxel resolution.

3https://github.com/milesial/Pytorch-UNet
4https://github.com/96lives/gca
5https://github.com/autonomousvision/convolutionaloccupancynetworks
6https://github.com/angeladai/sgnn

JS3CNet [21] and SCPNet [20] We compare with
JS3CNet [21] and SCPNet [20], state-of-the-art outdoor
semantic scene completion methods. We use the official
implementation released from the authors78. We adapt the
method to our setting by changing the semantic class output
to binary variable representing occupancy. We observe a
class imbalance problem during training, where there are
much more empty voxels than the occupied ones. We find
that weighing the loss 3:1 for occupied to empty cells per-
forms best for both models. While the original semantic
scene completion works uses 20cm3 voxel resolution, we
additionally train on 10cm3 voxel resolution for JS3CNet.
For 10cm3 model, we modify the output resolution to 10cm3

to match our voxel resolution by adding an extra upsampling
layer. For SCPNet, we omit training on 10cm3 resolution
since it did not fit in a single 24GB GPU.

C.3. Other Implementation Details

All of our methods are implemented using PyTorch [13].
For all point cloud to voxel conversion, we first round point
cloud into 10cm3 voxels and use floor operation on the co-
ordinates of voxels to create 20cm3 voxels. For any models
except the upsampling stage of hGCA, we train on a dataset
combined with CARLA and Karton city having a rate of
50% for each dataset. For methods that utilize unsigned
distance fields (cGCA, hGCA), we create mesh in 5cm3

voxel resolution with marching cubes [8] using the unsigned
distance values of the voxels. For IoU and street CD evalua-
tion, we obtain points close to surface by sampling voxels in
5cm3 resolution that have implicit distance below 0.5. For
ConvOcc [15], we evaluate IoU and street CD by sampling
from the points created from the mesh, which represents the
surface of the completed shape in occupancy representation.
We use blender [4] for visualization. For visualizations over-
layed with input, such as Fig. 1, we render input points if a
point is either in front of a mesh or is less than 0.5 meters
back from the mesh in the rendering view.

D. Evaluation Metric

High LiDAR ReSim evaluates the fidelity of the completion
beyond the LiDAR range focusing on regions visible from
the street, visualized in Fig. 12. It computes the Chamfer dis-
tance between a ground truth LiDAR scan and a re-simulated
LiDAR scan from a pose distant from the center after the
completion. The metric avoided evaluating inconsistent ge-
ometry in interior walls of the buildings in ground truth
geometry (green in Fig. 12).

Given an origin in the ego-vehicle frame, we set a region
of interest R to be a box of 38.4 × 38.4 meters. We take
the scanned input point cloud X within R and generate

7https://github.com/yanx27/JS3C-Net
8https://github.com/SCPNet/Codes-for-SCPNet

https://github.com/milesial/Pytorch-UNet
https://github.com/96lives/gca
https://github.com/autonomousvision/convolutional_occupancy_networks
https://github.com/angeladai/sgnn
https://github.com/yanx27/JS3C-Net
https://github.com/SCPNet/Codes-for-SCPNet

(a) GT (b) Input scans (c) High LiDAR ReSim

(d) IoU Mask (e) Regions for Street CD

Figure 12. Evaluation visualization. (a) Ground truth geometry in Karton City. (b) Input scans. (c) High LiDAR Resim of GT from a novel
pose. (d). Ground truth occupied regions for IoU evaluation. (e) Regions for evaluating street CD. High LiDAR ReSim and IoU captures
geometry above the input LiDAR range, while it does not capture inconsistent building interiors (green). Street CD is the only metric that
can evaluate completion of occluded geometry from road, such as side-walk side of the car.

completion Y . We select two poses p1, p2 ∈ P from the
ego vehicle trajectory that enters and leaves the region of
interest R. The selected poses are distant from the center,
which and inside R, making the re-simulated LiDAR scan
far from the input scan taken from the center while making
the LiDAR ReSim free of occlusions occurring outside of R.
We found only 3 out of 1440 (180 scenes × 2 poses per scene
× 4 test configurations with Karton City/CARLA dataset
with 5/10 input scans) poses overlapped with the input pose,
indicating that the selected poses for evaluation are mostly
unique. We perform lidar simulation from poses pt one the
completion Y in mesh representation. If the completion is in
voxel representation, we convert it into mesh using marching
cubes [8] and average the Chamfer Distance between the GT
and re-simulated LiDAR scan. For high range LiDAR used
from evaluation, we use a 128-beam LiDAR with elevation
angle (-30°, 30°), which acquires denser scans than the input
captured with 64-beam LiDAR, to cover the range above the
input scan, visualized in (c) of Fig 12. Thus the Chamfer
distance (CD) for input X is defined by

CDReSim(X,Y) =
1

|P |
Σpt∈P CD(Xt, Yt),

where Xt is the lidar scan from pose pt in the region of
interest and Yt is the simulated lidar scan of generation Y
from pose pt. We also evaluate diversity TMD as in [19, 23,

24] for input X is defined as

TMDReSim(X,Y) =

1

|P |
Σpt∈PTMD({Xt},∪1≤k≤K{Yt,k}),

where Yt,k is the k-th completion for input Xt and TMD is
defined as the following:

TMD(Sp, Sc) =

1

|Sp|
∑
P∈Sc

2

k(k − 1)

∑
1≤i<k

∑
i<j≤k

CD(CP
i , CP

j),

where P ∈ Sp denotes the partial input and Sc = CP
1:k is the

set of completions cPi for partial input P .

D.1. IoU

IoU is evaluated on the visible regions in 20cm3 voxel reso-
lution from the street following the previous semantic scene
completion (SSC) works [1, 20, 21]. In contrast to SSC
that computes IoU against accumulated LiDAR scans, we
compute IoU against ground truth geometry from the visible
regions are obtained using high elevation LiDAR, used for
High LiDAR Resim, and covers regions beyond the input
LiDAR range, visualized in (d) of Fig. 12. To obtain the
visibility mask, we perform TSDF fusion [10] from all the
poses in a single drive for each block of interest and obtain
the TSDF values for the block with grid of voxel resolution
10cm3. We set the grid to visible only if the TSDF value
is bigger than -0.3 and convert the mask into 20cm3 voxel
resolution.

Street CD includes evaluation on geometry completely
occluded from the ego-trajectory, such as the sidewalk side
of parked cars, visualized in Fig. 12, which neither High
LiDAR ReSim nor IoU (pink) can evaluate. On Karton City
dataset, where the scene is a simple crossroad junction, we
compute Chamfer distance between the generated geome-
try against GT, only on the objects on the main street. To
evaluate objects above the ground, we remove it for both
the completion and ground truth by simply thresholding the
z-axis with 20cm.

E. Additional Visualizations on Synthetic
Scenes

We provide additional visualizations on synthetic scenes in
Fig. 13, 14, 15, 16.

References
[1] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,

C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for
Semantic Scene Understanding of LiDAR Sequences. In
ICCV, 2019. 1, 14

[2] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. ShapeNet: An Information-Rich 3D Model Repos-
itory. Technical Report arXiv:1512.03012 [cs.GR], Stanford
University — Princeton University — Toyota Technological
Institute at Chicago, 2015. 11

[3] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3075–3084, 2019.
13

[4] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 13

[5] Angela Dai, Christian Diller, and Matthias Nießner. Sg-nn:
Sparse generative neural networks for self-supervised scene
completion of rgb-d scans. In CVPR, 2020. 1, 6, 13

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1–16, 2017. 6, 11

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 13

[8] William E. Lorensen and Harvey E. Cline. Marching cubes: A
high resolution 3d surface construction algorithm. In Proceed-
ings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, page 163–169, New York, NY,
USA, 1987. Association for Computing Machinery. 13, 14

[9] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,
Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang,
Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar

simulation by leveraging the real world. In CVPR, pages
11167–11176, 2020. 10

[10] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David
Molyneaux, David Kim, Andrew J. Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgib-
bon. Kinectfusion: Real-time dense surface mapping and
tracking. In 2011 10th IEEE International Symposium on
Mixed and Augmented Reality, pages 127–136, 2011. 14

[11] Augustus Odena, Vincent Dumoulin, and Chris Olah. Decon-
volution and checkerboard artifacts. Distill, 2016. 9

[12] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019. 13

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. 13

[14] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Med-
ical Image Computing and Computer-Assisted Intervention
(MICCAI), pages 234–241. Springer, 2015. (available on
arXiv:1505.04597 [cs.CV]). 13

[15] Lars Mescheder Marc Pollefeys Andreas Geiger
Songyou Peng, Michael Niemeyer. Convolutional oc-
cupancy networks. In European Conference on Computer
Vision (ECCV), 2020. 13

[16] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han,
Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Ettinger,
Maxim Krivokon, Amy Gao, Aditya Joshi, Sheng Zhao,
Shuyang Cheng, Yu Zhang, Jonathon Shlens, Zhifeng Chen,
and Dragomir Anguelov. Scalability in perception for au-
tonomous driving: Waymo open dataset, 2019. 12

[17] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,
Yuning Chai, Benjamin Caine, et al. Scalability in perception
for autonomous driving: Waymo open dataset. In CVPR,
pages 2446–2454, 2020. 1, 12

[18] Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song
Han. Torchsparse: Efficient point cloud inference engine. In
Conference on Machine Learning and Systems (MLSys), 2022.
10

[19] Rundi Wu, Xuelin Chen, Yixin Zhuang, and Baoquan Chen.
Multimodal shape completion via conditional generative ad-
versarial networks. In ECCV, 2020. 14

[20] Zhaoyang Xia, Youquan Liu, Xin Li, Xinge Zhu, Yuexin Ma,
Yikang Li, Yuenan Hou, and Yu Qiao. Scpnet: Semantic
scene completion on point cloud. In IEEE Conference on
Computer Vision and Pattern Recognition, 2023. 1, 6, 10, 13,
14

In
pu

t
G

T
C

on
vO

cc
SC

PN
et

JS
3C

N
et

(2
0c

m
)

SG
-N

N
G

C
A

(2
0c

m
)

cG
C

A
hG

C
A

Figure 13. Visualizations on CARLA (first 2 columns) and Karton City (last 2 columns) from a single scan. Scenes were randomly chosen.

[21] Xu Yan, Jiantao Gao, Jie Li, Ruimao Zhang, Zhen Li, Rui
Huang, and Shuguang Cui. Sparse single sweep lidar point

cloud segmentation via learning contextual shape priors from
scene completion. In AAAI, pages 3101–3109, 2021. 1, 6, 13,

In
pu

t
G

T
C

on
vO

cc
SC

PN
et

JS
3C

N
et

(2
0c

m
)

SG
-N

N
G

C
A

(2
0c

m
)

cG
C

A
hG

C
A

Figure 14. Visualizations on CARLA (first 2 columns) and Karton City (last 2 columns) from 5 scans. Scenes were randomly chosen.

In
pu

t
G

T
C

on
vO

cc
SC

PN
et

JS
3C

N
et

(2
0c

m
)

SG
-N

N
G

C
A

(2
0c

m
)

cG
C

A
hG

C
A

Figure 15. Visualizations on CARLA (first 2 columns) and Karton City (last 2 columns) from 10 scans. Scenes were randomly chosen.

14

[22] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge

Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. arXiv, 2019.

In
pu

t
G

T
C

on
vO

cc
SC

PN
et

JS
3C

N
et

(2
0c

m
)

SG
-N

N
G

C
A

(2
0c

m
)

cG
C

A
hG

C
A

Figure 16. Visualizations on CARLA (first 2 columns) and Karton City (last 2 columns) from many accumulated scans. Scenes were
randomly chosen.

11
[23] Dongsu Zhang, Changwoon Choi, Jeonghwan Kim, and

Young Min Kim. Learning to generate 3d shapes with gen-
erative cellular automata. arXiv preprint arXiv:2103.04130,
2021. 13, 14

[24] Dongsu Zhang, Changwoon Choi, Inbum Park, and
Young Min Kim. Probabilistic implicit scene completion.
ICLR, 2022. 12, 13, 14

	. Additional Analysis
	. Evaluation on Real-World Data
	Waymo-Open
	nuScenes

	. Generalization to Various Input Conditions
	. Planner Feature Visualization
	. Effects of LiDAR noise
	. Space and Time Complexity

	. Dataset
	. Karton City
	. CARLA
	. Waymo-Open
	. Lidar Simulation

	. Implementation Details
	. hierarchical Generative Cellular Automata
	. Baselines
	. Other Implementation Details

	. Evaluation Metric
	. IoU

	. Additional Visualizations on Synthetic Scenes

