
A. Casual Tracking for Localization
In this paper, the weight selection is localized to the first MLP layer within transformer blocks. We discussed such localization
in prior model editing and probing works in Section 4. We further perform casual tracking to validate the localization.

Vig et al. [54] quantifies the contribution of intermediate variables in causal graphs for causal mediation analysis. Based
on this, Meng et al. [42] proposed casual tracking for identifying neuron activations that are decisive in a language model’s
factual predictions. Casual tracking identifies specific locations that contribute to the input’s recognition by computing the
average effects of restoring activations at these locations on a corrupted input. We adapt the casual tracking to CLIP models
and formulate the computation of average indirect effect (AIE) in the following.

In CLIP model with ViT backbone, we freeze one tower of visual or text and perform casual tracking on the other. Take the
casual tracking on image tower for example, we do the next three runs:
• Clean run. We pass an image-text pair into the model and store activations of the visual tower {a`i |i 2 [1, T], ` 2 [1, L]},

and get the similarity score S. Here T is the number of tokens, and L is the number of layers.
• Corrupted run. We then pass the image into visual tower by adding noises to the image embeddings of patches related to

the corresponding text and get a corrupted visual output feature. We compute the similarity score Sc between this feature
and the clean text features.

• Corrupted-with-restoration run. Finally, we follow the corrupted run to add noises on image embeddings, and replace
the activation of layer ` token i with the clean activation a`i , and get corrupted-with-restoration visual output features. We
compute the similarity score Sr

`
i between these features and the clean text features.

The average indirect effect (AIE) is computed by the average difference between the similarity scores of corrupted run and
corrupted-with-restoration runs, i.e.

AIE` =
1

T

X

i2[1,T]

��Sr
`
i � Sc

��
S

. (7)

Here
��Sr

`
i � Sc

�� measures the change of similarity scores when we restore one single state, i.e., activation, back to the clean
activation. In CLIP model, we observe that this restoration often does not lead to positive effect to the similarity score; thus we
compute the absolute change here. As we need to aggregate AIE over multiple image-text pairs, we normalize the change of
similarity by the score from the clean run. In casual tracking of text tower, we freeze the CLIP visual tower and apply the same
procedure on the text tower.

Intuitively, higher AIE` means activations or states of layer ` are more important to the final classification. We further
compute AIE over MLP layers AIE`

mlp or Attention layers AIE`
attn by restoring activation values outputted from MLP or

Attention layers among all the transformer blocks.
In practice, we perform casual tracking on the validation set of COCO [35] since it provides detailed information on objects

in images. We decide the object-related image patch by the bounding box information. We use the prompt a photo of
{class name} as text input, and the image-related tokens are those that represent the class name. The casual tracking
results are in Fig. 2. Here we show the effect of restoring states (activations) after full layer in blue, the effect of restoring
states after Attention layers in orange, and the effect of restoring states after MLP layers in green.

The figure demonstrates higher AIE`
mlp values compared to AIE`

attn values in both visual and text tower, with a larger
contrast in the visual tower. This implies the change of MLP layers contributes more to the final classification, which further
validates our choice in performing selection on the MLP layers.

B. Visualization for Parameter Selection
In addition to section 5.3, we further validate the parameter selection qualitatively from two perspectives. Firstly, we utilize
gScoreCAM [13] to visualize the attention of selected neurons on original images, illustrating their representativeness to the
features. Secondly, we visualize the correlation of selected weights from different tasks. This is to demonstrate the task-wise
separation in the selection process, which aids in mitigating forgetting.

gScoreCAM [13] follows the idea of ScoreCAM [56] to perturb the input image with the upsampled activation map, and
aggregate the CAM scores. The importance of neuron activations to specific input features is derived from the aggregated
scores. gScoreCAM selects only 10% of the activations in regard to their gradient values to perturb the input image, and shows
the selected activations are effective in localizing the features. This is in agreement with our selection strategy and modularity
hypothesis (section 4). We applied gScoreCAM on the neurons of the first MLP layers in CLIP visual tower and selected the
top 10% activation values to perturb the input image. We show the highlighted regions by selected activations of images from
the CUB dataset in Fig. 3. We perform the visualization on the neurons of the first MLP layers of the 9th transformer layers.

Figure 3. Highlighted regions by activations of selected neurons in the first MLP layers of the 9th transformer block in gScoreCAM
visualization. Selected neurons represent meaningful features in the input image.

In Fig. 4, we analyze the correlation between selected weights across different tasks in various layers. Patch with row label
task i and column label task j shows the percentage of the shared weights selected in task i and task j. We observe that the
frequency of repeated weight selection for different tasks seldom exceeds 50%. This pattern suggests that while our scoring
function occasionally identifies common weights across tasks, it predominantly selects task-specific weights. Notably, the
incidence of repeated selection decreases in shallower layers, as demonstrated in layer 5 (first row), which implies a higher
occurrence of modulation in these layers. Thus, our approach of selecting weights across all transformer layers is further
validated.

C. Learnable Scoring Function
In section 5.3, we perform different scoring functions to validate the effectiveness of our proposed gradient-based scoring
function, including the Mask baseline. Here, we describe the Mask baseline.

Although the gradient is an efficient approximation of the parameters’ relevance to the task at hand, we suspect selecting
parameters independently based on their gradient magnitude might not consider the contribution of the parameters together
when updated, and can potentially cause redundancy in the selection. To explore this, we propose to involve an optional
optimization stage to adjust the scoring function based on the initial gradient values. Specifically, for parameters ✓l 2 Rm⇥n,
we define S 2 Rm⇥n to be the learnable parameters scores. We initialize S with the gradients computed on the current task,
where Sij =

1
N 0

t

PN 0
t

k=1 gij(xk). We consider the estimated gradient as the basis for a target update of the model parameters
and construct an imaginary update:

✓l0 = ✓l � µ · S, (8)

where µ is the update step size (learning rate). We then optimize S by minimizing the task loss L and an additional L1 loss
(kSk1)

S0 = argmin
S

L(✓l0;Dt) + �kSk1, (9)

where � is a hyperparameter that weighs the contribution of L1 loss. L1 loss is introduced to encourage sparsity in the
estimated scores, guiding the optimization to tolerate parameters with large gradient magnitude (and hence large initial scores)
when proven relevant to the minimization of the task loss while zeroing out gradients of irrelevant or redundant parameters.

We optimize S for a few epochs. Then, we define S(✓lij , Dt) = S0
i,j and select top r parameters as the most relevant

parameters for the task at hand. Note that here we estimate parameter scores for one selected layer ✓l, but the formulation can
generalize to an arbitrary number of layers.

The learnable scoring function requires more computation due to the additional optimization phase of S compared to the
gradient scores. We present the efficacy of this optional stage in Table 3 of the main paper.

Figure 4. Repeat rate of the selected weight in visual and text tower of layer 5 and layer 10 in CLIP. The shared weight selected two different
tasks only counts a small amount of total selected weight.

D. Relations to other sparse update works

Gradient-based selection. Gradient-based parameter attribution is a robust metric that has been widely used in CL and
other fields like model compression and multi-task learning; however, when and where to use it is the key point to stand our
method out. HAT [50], SupSup [62], and SPG [30] leverage the gradients after training of previous tasks to penalize the
change of previously learned important parameters, which are more similar to EWC [29] and MAS [2]. We applied SPG in
our setting and show significant improvements by our method in all metrics in ?? More importantly, in our case, gradients of
previous data (pre-training data) are inefficient or unavailable to obtain and noisy. Distinctly, we achieve knowledge retention
via sparse updates by two key steps, localization and parameter pre-selection. Our gradient-based pre-selection serves as an
approximation to identify the specialized parameters of the upcoming task, which is crucial to allow large decrease in the loss
function with the smallest change in the selected parameters.

Sparse network. PiggyBack [40] learns a task-specific binary mask for every task, requiring task identifiers which we
assume inaccessible. SparseCL [58] compresses the model by 75%-95% for on-device CL, and would fail to fit in our problem
in two ways. 1) During training of a task, SparseCL combines the magnitude of the parameters and their gradients as a score to
omit unimportant parameters in Equation (1). The magnitude of the parameter kwk1 is relevant when training a network from
scratch and in SparseCL it is the dominant factor in parameter selection; after reproducing SparseCL experiment, we found
that the magnitude of weights kwk1 is on average 6.93e-3 while the gradient ↵k@L̃(Dt;✓)

@w k1 is on average 2.02e-4. However, in
a pre-trained foundation model, the magnitude of weights is mostly relevant to the knowledge learned during pre-training.
Our gradient-based selection is to measure the relevance of parameters to the upcoming task, and the sparse update is not to
compress the network but to discourage the unrelated parameters to be modified. 2) SparseCL dynamically selects parameters
to be updated every several epochs; selecting additional parameters and omitting from already changed parameters leads, at
the end of the task training, to many parameters changed. This would incur more forgetting of generic knowledge. In Tab. 1
SparseCL fails to improve Acc. and causes drop in generic knowledge (C.) specially when learning generic datasets.

E. Implementation Details
E.1. Dataset
Here are the statistics of our six experimental benchmarks.

Birdsnap [5] Birdsnap is a large bird dataset originally consisting of 49,829 images from 500 bird species with 47,386
images used for training and 2,443 images used for testing. We download the dataset from the official link. We follow the
official train-test split. We use a fixed buffer of size 1,500 for this dataset.

CUB-200-2011 [55] The Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset is for fine-grained visual categorization
task. It contains 11,788 images of 200 subcategories belonging to birds, 5,994 for training and 5,794 for testing. We use the
Hugging Face implementation of the dataloader. We use a fixed buffer of size 240 for this dataset.

CIFAR100 [32] This dataset has 100 classes containing 600 images each. There are 500 training images and 100 testing
images per class. We use the PyTorch implementation of the dataloader. We used a fixed buffer of 2,000 for this dataset.

FGVC-Aircraft [39] The dataset contains 10,200 images of aircraft, with 100 images for each of 102 different aircraft
model variants, most of which are airplanes. The data is divided into three equally sized training, validation, and test subsets.
We use the PyTorch implementation of the dataloader, where train and valid set are used for training, and the test set is used
for testing. We use a fixed buffer of size 250 for this dataset.

Stanford Cars [31] The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training
images and 8,041 testing images, where each class has been split roughly in a 50-50 split. Classes are typically at the level of
Make, Model, Year, e.g., 2012 Tesla Model S or 2012 BMW M3 coupe. We use the Hugging Face implementation of the
dataloader. We use a fixed buffer of size 240 for this dataset.

GTSRB [52] This dataset is designed for recognition of traffic signs. By the time we download it, it contains 43 classes with
26,640 training samples and 12,630 testing samples. We use the PyTorch implementation of the dataloader. We used a fixed
buffer of 1,000 for this dataset.

For each dataset, during the training, we use the prompt a photo of {} with class name as text inputs. We evaluate
each baseline on the test set using the original prompts and ensembling strategy provided by Radford et al. [48].

E.2. Hyper-parameters
For our algorithm, we use PyTorch implemented AdamW optimizer [38] and learning rate scheduler of Cosine Annealing with
Warmup [37] for our algorithm, as well as FLYP combined with ER and other CL regularization methods. We use a learning
rate of 7.5e-6 and train for 10 epochs for all datasets. We report results based on an average of 5 different random seeds. We
run all our experiments on one single Nvidia A100 GPU.

E.3. Baseline Details
Here are the implementations for other baselines in Table 1.

FLYP [21] For all FLYP based baselines, we tuned the learning rate in [2.5e-6, 5e-6, 7.5e-6] and training epochs in
[5,10,15] and report the best results

FLYP+ER [11] For ER-based baselines, we apply balanced sampling, where at each step, we sample a balanced batch, half
from the current task and half from the previous tasks.

FLYP + MAS [2] We follow the avalanche [36] to implement MAS regularizer with FLYP. To cope with the large-scale
architecture, we normalize the estimated weights’ importance by their maximum value. We tuned the scaling factor of MAS
loss in [0.01, 0.05, 0.1] and report the best results.

FLYP + ER + LwF/PRD [4, 34] For LwF, we follow the implementation of avalanche. For PRD, we follow the official
implementation. We further tuned temperature in [0.01,0.1,1.0,5.0] and loss scaling factor in [0.01, 0.05, 0.1] and report the
best results.

L2P, DualPrompt [59, 60] These two methods were originally designed for ViT backbone with linear classifier. They
proposed to freeze the feature extractor and only train the classifier. We adopt the idea to the backbone of CLIP architecture,
where we freeze the visual and text feature extractors and only train the linear projection layers. We applied the prompt
techniques on the visual tower of CLIP. We deploy them with the CLIP pre-trained weights provided by timm library. We
further applied a class balanced buffer to them as what we did for FLYP + ER. These methods are highly tailored for ImageNet
pretrained transformers and do not scale to other pretrained weights, leading to surprisingly bad performance when combined
with CLIP, in spite of our best efforts to tune the hyperparameters carefully.

SLCA [65] We adopted the slow learning rate and classifier alignment to the CLIP backbone. In the first training phase,
we applied the learning of 1.5e� 6 to the backbone, and 7.5e� 6 to the projection layers. In the section training phase of

classifier alignment, we only train the projection layers.
LoRA-EWC [63] We compute fisher information by CC12m [9], and apply the EWC loss on every task. We applied the

LoRA architecture on both visual and text tower. We further modified it with different ranks in LoRA and applied a replay
buffer.
Here are other baselines in Table 2.

Random This baseline mainly follows our method SPU, except for Equation 2 in the main paper. In this baseline, we use
random values for the scoring function.

Mask We described this method in ?? in the supplement. We optimize the learnable score matrix S for 5 epochs, with the
learning rate of 5e� 4 and step size µ = 5e� 4. We set the L1 loss coefficient � = 1e� 3

PiggyBack [40] This baseline mainly follows the Mask baseline, except for the format of the imaginary update in
Appendix C. We applied the PiggyBack mask learning format, where

✓l0 = ✓l + µ · m(S). (10)

Here µ is a scaling factor, and m(·) is a binary mask. We uniformly initialized S and applied AdamW optimizer as proposed
in PiggyBack. We optimize the score matrix S for 5 epochs, with the learning rate of 1e-4 and the scaling factor µ of 1e-5.

F. More Details in Ablation Study

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. In. Avg. F. C. Drop

w/ Loc. 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94
w/o Loc. 43.35 16.12 63.54 54.56 14.37 61.08 76.83 4.30 63.26 84.43 -0.26 59.95 71.64 4.56 62.42 93.81 -7.75 61.53 20.93 5.22 1.59

Table 7. Comparison between w/ localization and w/o localization. The localization improves the retention ability.

Knowledge Retention. Our good retention ability is dually contributed by the localization and selective update. We localize
the change to the first MLP layer, and keep other model components unchanged for knowledge retention. In Tab. 7, selective
update without localization (w/o Loc.) results in less retention. Besides localization’s role in retention and the sparse updates,
the parameters randomly selected generally have smaller gradients magnitudes regarding the task-in-hand; thus under same
learning rate and number of epochs, the magnitude of parameters change can be smaller, which helps in retention.

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. In. Avg. F. C. Drop

Weight 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94
Neuron 44.13 14.02 63.60 55.32 12.66 62.77 77.46 3.33 63.62 83.98 -0.79 61.84 71.14 5.16 63.23 93.54 -8.15 63.22 21.09 4.37 0.50

Table 8. Comparison between weight-based selection and neuron-based selection. Our method employs weight selection and has better
learning ability.

Neuron-based Selection. We propose to compute the element-wise importance scores by Equation 2 in the main paper to
facilitate weight-based selection. Whereas, Aljundi et al. [3] put forth a technique to calculate row-wise importance scores to
perform neuron-based selection.

Tab. 8 shows the full results of variants of selection strategy, where the gray row represents our strategy. In the baseline
named “Weight” we compute an element-wise scoring function by Equation 2, and select the top 10% entries of each weight
matrix to update. In the baseline named “Neuron”, we compute a row-wise scoring function based on the row summation of
the element-wise scoring function by Equation 2. Then we select the 10% rows of each weight matrix to update.

We find that weight-based selection yields slightly improved learning performance while exhibiting a marginal decrease
in hold-out accuracy. Nonetheless, the overall performance trends remain comparable between the two strategies. This
observation highlights the robustness of our localization and importance scoring methods to any of the selection strategy.

Selection Rate. In Section 5.3, we present the average results of our method under varying selection rates. Tab. 9 shows the
full results, where the gray row represents our reported results. Our main results select the top 10% elements localized layer.
We compare to the baselines where the top 1% or the top 50% are selected for update. All other configurations are kept the
same.

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. In. Avg. F. C. Drop

0.01 37.64 11.45 63.54 53.49 9.87 62.25 74.62 2.20 63.40 83.79 -1.64 60.91 66.79 4.39 63.01 88.89 -7.71 61.53 17.70 3.10 1.11
0.10 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94
0.50 46.73 20.74 63.56 53.96 17.98 61.72 77.64 6.12 63.48 83.47 1.51 61.53 71.89 8.06 62.85 95.74 -7.85 62.43 21.73 7.76 0.95

Table 9. Full results of ablation on selection rate. Our method select 10% weights, achieving better trade-off in learning and forgetting.

Buffer Size. In Section 5.3, we present the average results of our method and FLYP + ER under varying buffer size. We
study buffer sizes of 1%, 2% and 4% of the total dataset size. Tab. 10 shows the full results of buffer size ablation. We report
our method with 4% buffer size of the total dataset size in Table 1 in the main paper, highlighted in gray.

Method Buffer Size
/ Total Size

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. In. Avg. F. C. Drop

ER 1% 27.76 44.49 49.22 43.76 33.59 55.90 61.22 21.19 55.34 73.70 13.34 40.14 53.39 25.26 48.81 93.03 -4.22 16.79 8.97 22.27 19.18
ER 2% 33.42 41.37 49.74 49.96 29.20 56.35 62.83 21.45 57.35 78.72 7.94 41.74 57.90 22.84 50.83 95.64 -6.68 15.82 13.24 19.35 18.24
ER 4% 41.42 31.48 50.41 56.22 21.63 56.72 69.08 16.42 58.07 82.86 3.41 42.10 64.07 17.72 51.30 96.28 -7.40 17.34 18.48 13.88 17.56

SPU 1% 37.82 21.96 63.56 47.54 23.61 61.65 73.68 6.84 63.36 80.44 4.87 61.49 66.06 9.32 62.47 90.55 -4.93 62.76 16.18 10.28 1.00
SPU 2% 40.65 20.31 63.44 51.33 18.97 61.90 75.00 6.17 63.41 82.45 2.03 61.36 68.39 8.42 62.81 92.99 -7.04 62.63 18.63 8.14 0.96
SPU 4% 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94

Table 10. Full results of ablation on the buffer size. Our method shows superior performance over ER even in smaller buffer scenarios.

Method Task
Length

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. In. Avg. F. C. Drop

ZSCL 10 30.96 15.65 65.53 49.85 13.28 63.13 67.79 8.27 62.90 80.50 1.05 61.90 61.09 7.69 62.78 62.92 13.54 62.92 9.01 9.91 0.36
ER 10 41.42 31.48 50.41 56.22 21.63 56.72 69.08 16.42 58.07 82.86 3.41 42.10 64.07 17.72 51.30 96.28 -7.40 17.34 18.48 13.88 17.56

SPU 10 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94

ZSCL 20 28.23 28.81 62.92 43.23 20.23 62.83 69.67 11.21 62.56 68.05 21.21 55.17 60.55 16.15 62.15 15.40 33.43 55.82 -2.32 21.84 3.31
ER 20 5.67 37.93 47.99 53.53 28.12 55.80 65.71 22.60 52.98 81.73 9.74 32.58 61.58 23.25 47.21 94.80 -0.33 9.72 15.66 20.22 22.50

SPU 20 39.60 13.95 63.70 54.52 13.12 62.41 75.13 6.40 63.01 83.77 3.43 61.33 68.57 8.32 62.78 92.53 -2.37 62.27 19.18 7.14 0.97

Table 11. Full results of ablation on the task length. Our method shows superior performance over ER even in longer task scenarios.

Task Length We perform experiments on 20-split datasets and compare our method with ER (second-best Acc. In.) and
ZSCL (best C.) in Tab. 11. The gap between SPU and ER/ZSCL becomes larger, as shown in blue value, than that in 10-split
experiments. With 20 tasks, SPU has almost no drop in performance compared to 10 tasks, while ER and ZSCL have negative
overall performance (Acc. In. - C. Drop).

G. More Details in Efficiency

Aircraft Birdsnap Cars CIFAR100 CUB GTSRB Average

Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. F. C. Acc. In. Avg. F. C. Drop

one batch 44.42 14.40 63.50 55.02 13.33 62.04 77.41 3.36 63.40 83.99 -0.38 61.36 71.48 4.90 62.86 94.14 -7.79 62.52 21.24 4.64 0.94
0.25 44.43 14.42 63.48 55.35 12.78 61.94 77.51 3.26 63.42 83.99 -0.39 61.38 71.51 4.84 62.87 94.25 -7.87 62.55 21.34 4.51 0.94
0.50 44.33 14.48 63.48 55.31 12.73 61.88 77.54 3.16 63.44 84.03 -0.41 61.37 71.67 4.63 62.87 94.24 -7.82 62.58 21.35 4.46 0.94
1.00 44.40 14.40 63.47 55.28 12.61 61.85 77.61 3.12 63.44 84.05 -0.40 61.35 71.66 4.64 62.87 94.27 -7.81 62.58 21.37 4.43 0.96

Table 12. Full results of ablation on the number of samples to compute the gradient approximation. Our scoring function can efficiently cope
with only one-batch gradient accumulation.

Number of samples to compute gradient approximation. In Equation 2, we accumulate the gradients of N 0
t samples to

approximate the importance. Here we ablate the effect of accumulating gradients with one batch (128 data points), 25% 50%,
and 100% of the current set. We compute the importance score by the accumulated gradients before the training of every task,
and the computational cost per task gets reduced with fewer samples to approximate the scoring function. With more samples,
the accuracy is slightly increased, with also slight decrease in forgetting. Our algorithm is robust to all different configurations
in general. Full results are shown in Tab. 12. We choose to report our main results by accumulate gradients of 25% samples of
the current set, highlighted in gray.

	. Introduction
	. Related Work
	. Continual Learning From Pretrained Models
	. Selective Parameter Update (SPU)
	. Experiments
	. Setup
	. Results
	. Ablation Study
	. Efficiency

	. Discussion
	. Casual Tracking for Localization
	. Visualization for Parameter Selection
	. Learnable Scoring Function
	. Relations to other sparse update works
	. Implementation Details
	. Dataset
	. Hyper-parameters
	. Baseline Details

	. More Details in Ablation Study
	. More Details in Efficiency

