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Supplementary Material

Figure 1. Overview of PeVL. The UCMR Block takes input video
and pose tokens to derive refined video and pose tokens. These
outputs are then input to the SGMC Module for multi-level con-
trastive learning alongside text tokens.

1. A High-level Overview
We provide a concise block diagram of PeVL in Figure 1,
where each block represents a newly designed module in
our paper. The details of the novel designs for each block
are described in the technical part of the main paper.

2. Additional Technical Details
2.1. Encoders with adapters

Video Encoder We adopt the pre-trained image encoder
in CLIP [20] with adapters [28] as the Video Encoder in
PeVL. The adapter consists of two fully-connected layers
and an activation layer, with a bottleneck structure. Our
Video Encoder gv adopts two adapters for spatial adapta-
tion and output adaptation, as shown in Figure 2 (a). An
advantage of this paradigm is that the network can be ini-
tialized directly from a large-scale pre-trained VL model,
providing a good starting point with reasonable initial per-
formance. Given a raw video x of a high temporal resolu-
tion T (Video (H)), we downsample x at temporal dimen-
sion to get a downsampled video of low temporal resolution
Tv (Video (L)). We adopt a space-only model, to process
each video frame independently. Consider the Video (L) is

of size Tv × H × W × 3, where Tv frames have a spatial
resolution of H ×W and three colour channels. We extract
disjoint patches from each frame, resulting in video embed-
ding v with Nv being the number of tokens. Each of these
tokens is then projected to Rd via a linear layer. Further-
more, a [cls] token is prepended to the input sequence of
each frame prior to its processing by the transformer to en-
able the classification of the entire video. After obtaining
Tv [cls] tokens where each [cls] token stands for the rep-
resentation of each frame, we added learnable position em-
beddings to each token to encode its position information,
and subsequently pass the tokens into the video encoder for
spatial modeling, denoted as S-Attn.

Similarly to the standard transformer, the input sequence
is transformed into key, query, and value matrices denoted
as Kv ∈ RNv×d, Qv ∈ RNv×d, and Vv ∈ RNv×d, respec-
tively. Self-attention [23] computes the pairwise similarities
between all combinations of tokens in the input sequence:

α =
exp(QvKv

⊺)∑Nv

j=1 exp(QvK
⊺
j )

(1)

where Qv, Kv are the d-dimensional query and key vector
for tokens at the spatial position. Afterwards, we compute
the average of frame features as the video representation,
i.e. zv =

∑
Tv

gv(v)/Tv .

Pose Encoder The pose configuration of a human in a
video is typically characterized by its 2D pose, which is
represented by a set of 2D coordinates (known as body
joints) that provide the specific locations of various hu-
man body joints in each video frame. We pass x into an
off-the-shelf 2D pose extractor to get pose representation
of T frames, which is then passed through learnable em-
bedding layers to obtain pose embedding p ∈ RT×Np×d,
where Np is the number of body joints. Then, we pass
p into the Pose Encoder gp, which consists of a spatial
modeling S-Attn, a temporal modeling T-Attn, with three
learnable adapters, as shown in Figure 2 (b). We first re-
shape p into a size of Np × T × d to be fed into the T-Attn
where it learns the relationship among the T frames. Sub-
sequently, we reshape p into a size of T × Np × d to be
fed into the S-Attn where it learns the relationship among
the body joints in each frame. Though T-Attn and S-Attn
take in different input dimensions, they both share the same
weights and are frozen, where only newly inserted adapters
are updated during training. Afterwards, we compute the



Figure 2. Encoders with trainable adapters. (a) Video encoder with adapters; (b) Pose encoder with adapters; (c) Text encoder with
adapters.

Figure 3. Strength Coefficients in Semantic Content Guided Loss.

average of frame features as the pose representation, i.e.
zp =

∑
Tp

gp(p)/Tp.

Text Encoder Similar to the video encoder, we adopt
adapters to the CLIP text encoder. Afterwards, we pass
prompted text into text encoder gt as the text representation,
i.e. zt = gt(t

′), as shown in Figure 2 (c).

2.2. Strength Coefficients in Semantic Content
Guided Loss

Figure 3 illustrates strength coefficients {si}Bi=1 for a spe-
cific vpjs (for j = 1 to B, where j ̸= i) applied in our
proposed Semantic Content Guided Loss, in main paper ??.
Strength Coefficients {si}Bi=1 in Semantic Content Guided
Loss is to adjust the pushing strength on negative samples

(ts and vps) according to the discrepancy magnitude among
label texts (ts and tg), where tg , ts and vps denote ground
truth text, sampled text and sampled fused video&pose fea-
tures.

2.3. Architecture of methods in ablation study of
main paper

The architectures of methods mentioned in the ??, ?? and
?? of the main paper are shown in Figure 4, Figure 5 and
Figure 6, respectively. Figure 4 (a) is the same as the “VL
model” in main paper ??, and Figure 4 (e) is our proposed
PeVL. In main paper ??, the “V+P+T encoders” model is
same as architecture of Figure 4 (c). In Figure 5 (c1), when
“P2V” is removed, output features from the video encoder
are directly fed into SGMC Module. Similarly, in Figure 5
(c2), when “V2P” is removed, output features from the pose
encoder are directly fed into SGMC Module.

3. Additional Quantitative Analysis

3.1. Experiments Setting

Computational cost including tunable parameters and
FLOPs for pose-extraction is not considered, as some pose
data is provided by the dataset providers.



Figure 4. The architectures of methods mentioned in the main paper ??

Figure 5. The architectures of methods mentioned in the main paper ??.



Figure 6. The architectures of methods mentioned in the main paper ??.

Figure 7. Number of UCMR Blocks. PeVL performance drops
as increasing number of UCMR Blocks.

Table 1. Ablation of the pose encoder gp

Pre-trained Model Top-1 Top-5
Poseformer 88.0 97.9

CLIP image encoder 91.9 99.6

3.2. Additional Ablation Studies

3.2.1 Why use image encoder for pose encoder?

Given the inherent dissimilarity between images and 2D
pose, our first instinct is that the model yields better re-
sults when the pre-trained data and the new data share sub-

stantial similarities. We conducted ablation studies on the
pre-trained models used for the pose encoder, as shown
in Table 1. Both pre-trained models are frozen and added
with learnable adapters for pose encoding. If we replace
the pre-trained model for the pose encoder in PeVL from
CLIP image encoder to Poseformer [29], the Top-1 accu-
racy dropped to 88.0%. Here are some possible reasons: (1)
Cross-modal information: The integration of an image vi-
sion transformer on pose data may indeed appear unconven-
tional at first glance. While images and 2D skeletons may
differ substantially, their underlying semantic representa-
tions can still provide valuable insights for action recogni-
tion. Our method is designed to bridge the gap between
these modalities. By utilizing CLIP image encoder with
learnable adapters for the pose modality, we can adapt the
pre-trained image and text information encoded in the im-
age encoder to learn meaningful spatio-temporal pose fea-
tures. The results in Table 1 demonstrate the efficacy of our
proposed approach, showcasing its ability to leverage such
cross-modal information for improved performance. This
further supports our hypothesis that the unique interplay of
spatial and structural cues is indeed crucial in enriching the
action recognition process. (2) Pre-training dataset scale:
CLIP image encoder is pre-trained on a large-scale image-
text dataset, whereas the PoseFormer pre-trained model we
used is trained on the Human3.6M dataset [7], limiting the
diversity to fine-grained action poses. The dissimilarity in
the scale of the pre-training datasets plays a critical role in



Figure 8. Spatial Attention Visualization. In the visualization of poses, human body joints that are attended to are represented by darker
colours and larger circles compared to body joints with lower weights. For instance, in the case of the leg spreading action, there are
more significant weights assigned to body joints in the lower body than in the upper body. In the visualization of videos, brighter colours
indicate higher attention. Notably, we observe that greater attention is assigned to rapidly moving body parts. Moreover, spatial cues in
backgrounds, such as the balance beam, also receive notable attention.

Figure 9. Background Token Visualization. Every image patch is attributed to either a pose token or a background token (named
“grouping token” here) based on the token that exhibits the highest attention score with that particular image patch. The left image shows
the location of the 17 body joints in blue; while the right image shows the grouped image patches. In this example, there are 14 grouping
tokens with the highest attention scores, where the colour 13 represents image patches affiliated with the “Background Token”.

determining the models’ performance.

3.2.2 Temporal Attention in Pose Encoder

Having shown the effectiveness of PeVL for adapting
image-text trained CLIP for fine-grained human action
recognition, we explore how this approach encodes action-
specific information in video that enables the bridging of

the modality gap. We intend to use a small number of
video frames and a relatively large number of pose frames
to bridge the domain gap from the image foundation model
to the video domain, for the sake of not using large GFLOPs
as those pure video models. We conduct our experiments by
ablating on the T-Attn in the pose encoder used to learn in-
formation across frames, as shown in Table 3. When we
remove temporal attention layers from the pose encoder,



Figure 10. Temporal Attention Visualization. The attention patterns predicted by PeVL, displayed as coloured maps, depict temporal
focus for four video clips taken from different datasets. In these maps, darker shades indicate the precise temporal positions of highlighted
actions.

where both the pose and video tokens are fed directly to
S-Attn layers, we observe a substantial performance drop of
Top-1 accuracy from 91.9% to 70.0%, affirming the critical
role of temporal attention in PeVL.

3.2.3 Textual Prompt

The results of the textual prompt are presented in Table 4.
Notably, using textual prompts “a video of action” improves
Top-1 accuracy from 91.4% to 91.7% when the sole use
of label text. Incorporating coarse action type (e.g. “gym-
nastic” for the FineGym dataset) further improves 0.2% to
91.9%, thereby affirming the efficacy of an intelligible tex-
tual prompt with prior coarse-grained knowledge in improv-
ing performance.

3.2.4 Number of UCMR Blocks

We investigate a suitable number of UCMR Blocks em-
ployed in PeVL. Our results in Figure 7 indicate that one
UCMR Block is satisfactory across all benchmark datasets,
while the model’s effectiveness tends to diminish with more
blocks. This phenomenon can be attributed to the incor-
poration of additional UCMR Blocks resulting in the loss
of important contextual information from non-pose tokens
which also play a vital role, especially in HAA500 and
Toyota-Smarthome datasets.

3.3. Performance gain on coarse-grained human ac-
tion dataset

As mentioned in the main paper ??, it is interesting to in-
vestigate the benefits of our novel model on general coarse-
grained human action recognition, especially the compar-
ison with the baseline model. Table 2 presents the com-
parisons with SOTA video models on the K400 [9] dataset.



Figure 11. Semantic Concept Attention Visualization. For every video, we show the attention scores over 14 frames with phrases in the
label text (sentence), where attention for phrases is averaged over wordings.

Figure 12. Comparison Between Vanilla VL Model and PeVL on Temporal Attention. The first row is video frames of class “Flic-flac
with step-out, also with support on one arm”. The second and third rows are attention visualizations of the vanilla VL model and our PeVL,
respectively.

K400 contains approximately 240K training videos and
20K validation videos across 400 human action classes.
According to the table, transformer-based methods achieve
better results with strong vision transformers. We observe
that our PeVL consumes much fewer GFLOPs and tunable
parameters than most of the previous methods. PeVL ViT-
L/14 achieves 89.5% top-1 accuracy using 32 pose frames
and 32 video frames, which is comparable to SOTA per-
formance, where InternVideo [26] is pre-trained on K400.
When compared with the baseline AIM [28], our method
outperforms by 1.3% and 2.0% in Top-1 accuracy for back-
bones ViT-B/16 and ViT-L/14 respectively. We attribute the

comparatively modest performance on the K400 dataset to
the short videos and ego-centric videos that do not have
body poses, which limit the effectiveness of pose tempo-
ral reasoning. We believe that our model’s strength lies in
its ability to exploit the relationships between appearance,
movement, and semantic concepts, particularly in scenarios
where body poses are present and finer-grained text descrip-
tions are available. The current performance of PeVL has
revealed the potential of the multimodal learning framework
and the proposed new paradigm on the vision foundation
model for action recognition.



Table 2. Comparison to SOTA on Kinetics400.

Method GFLOPs
Tunable

Param (M) Frames Top-1 Top-5

TSM R50 [14] 330 24.3 8 74.1 91.2
CorrNet-101 [24] - - 32 79.2 -
SlowFast R101 [6] 7020 59.9 32 79.8 93.9
X3D-XXL [5] 4320 20.3 32 80.4 94.6
MoViNet-A6 [10] 386 31.4 120 81.5 95.3
MViT-B [3] 4095 37 64 81.2 95.1
UniFormer-B [11] 3108 50 32 83.0 95.4
TimeSformer-L [2] 7140 121 64 80.7 94.7
ViViT-L/16×2 FE [1] 3980 311 32 80.6 92.7
VideoSwin-L [16] 7248 197 32 83.1 95.9
MViTv2-L [13] 42420 218 32 86.1 97.0
TokenLearner-L/10 [22] 48912 450 64 85.4 96.3
PromptCLIP A7 [8] - - 16 76.8 93.5
ActionCLIP [25] 16890 142 32 83.8 97.1
X-CLIP-L/14 [17] 7890 420 8 87.1 97.6
EVL ViT-L/14 [15] 8088 59 32 87.3 -
MTV-L [27] 18050 876 32 84.3 96.3
Hiera-H [21] 1159x3x5 672 16 87.8 -
DualPath [18] 1868 27 32 87.7 97.8
EVA [4] - - 8 89.7 -
UMT-L [12] 1434x3x4 304 16 90.6 98.7
TubeViT [19] 17640 - 64 90.9 -
InternVideo [26] - 1300 16 91.1 -
AIM ViT-B/16 [28] 2428 11 32x3 84.7 96.7
AIM ViT-L/14 [28] 11208 38 32x3 87.5 97.7
PeVL ViT-B/16 815 43 32+32 86.0 97.1
PeVL ViT-L/14 944 112 32+32 89.5 98.1

Table 3. Ablation of the T-Attn in pose encoder

Model Top-1 Top-5
w/o T-Attn 70.0 81.2

PeVL 91.9 99.6

Table 4. Ablation of the textual prompt.

Model Top-1 Top-5
Label Text Only 91.4 99.3

+ Textual Prompt 91.7 99.5
+ Coarse Action Type 91.9 99.6

4. Additional Qualitative Analysis

4.1. Spatial Attention

Figure 8 visualizes the weighted body joints and refined
video attention for each video frame. With the proposed

UCMR Block, the model learns pose-aware visual features
which capture fast-moving body joints, further improving
spatial recognition in fine-grained actions. Furthermore, we
demonstrate the visualisation of our pose tokens with the
newly introduced “Background Token” in V2P (i.e., 17 +
1 grouping tokens), as shown in Figure 9. For each im-
age patch, we compute the attention with each grouping to-
ken and take the group label that has the highest attention.
When there are overlapped joints in a single patch, the lower
score labels will not be used. The inclusion of the back-
ground token ensures the effective grounding of each im-
age patch, thereby enhancing the learning process for both
action-related and appearance-related cues.

4.2. Temporal Attention

Figure 10 shows important frames along the temporal di-
mension. Our approach discerns and emphasizes informa-
tive frames pertinent to fine-grained recognition, disregard-
ing non-informative ones.



4.3. Semantic Concept Attention

In essence, PeVL learns to establish temporal correspon-
dence between semantic concepts (words) and the relevant
visual features. SGMC Module is learnt and optimized
to become ‘experts’ which can localize the corresponding
frames of related concepts in the temporal feature stream.
Figure 11 illustrates this action-concept correspondence,
where we average the attention over words in a phrase to
get the phrase’s attention. In Figure 11, the upper example
is taken from FineGym, which shows the model responds to
“round-off” at the beginning of the action, while to “flic-flac
with 0.5 turn on” and “stretched salto forward with 0.5 turn
off” towards the end of the action. The lower figure in Fig-
ure 11 shows a visualization example from Diving48, where
it can be seen that the attention for take-off action “re-
verse” is located at the beginning of the sequence, while the
ones for “somersault” and “twist” span over multiple cen-
tral frames, and flight position “piked” spans more frames
with similar human body poses. Figure 12 shows the com-
parison between the vanilla VL model and our PeVL, where
PeVL showcases better attention localisation on the corre-
sponding frames. These examples show the effectiveness
and advantage of SGMC Module with text concept super-
vised learning on video and pose features for fine-grained
human action recognition.
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