PhysPT: Physics-aware Pretrained Transformer for Estimating Human
Dynamics from Monocular Videos

Supplementary Material

In this supplementary material, we first provide addi-
tional details of our proposed approach:
* Section A: Global Trajectory Estimation
* Section B: Creation of Phys-SMPL, which includes (1)
the Calculation of Body Part Volume, Mass, and Inertia
Tensor; and (2) the Derivation of the Physical Parame-
ters in the Euler-Lagrange Equations
* Section C: Selection of Body Contact Regions
We then present additional evaluation results:
» Section D: Improvements over Different Kinematics-
based 3D Body Reconstruction Models
* Section E: Evaluation on Global Motion Recovery
* Section F: Quality of the Generated Force Labels
* Section G: Action-wise Recognition Performance

A. Global Trajectory Estimation

Traditional image or video-based 3D human body recon-
struction models provide estimates of 3D body configu-
ration in the body frame. Additionally, they estimate a
root rotation that transforms the estimated 3D configura-
tion from the body frame to the camera frame. To effec-
tively model human dynamics, a human body motion tra-
jectory represented in the world frame is needed. Besides
local body movements, the global motion trajectory fur-
ther involves the relative rotation between the camera frame
and the world frame, and the body translation in the world
frame. Inspired by the framework proposed by [94], we es-
timate these information through a global trajectory predic-
tor with the model architecture illustrated in Figure 6. The
input of the model are 3D body joint positions represented
in the body frame {J;}7_,. A Spatial-Temporal Graph Con-
volutional Networks (ST-GCN) [86] are then employed to
extract spatial-temporal features for every time frame as:

{h}/_, = cen({J. 1), (10)

where h* € R?%6, Typically, the camera pose remains con-
stant throughout a video. The model thus estimates a single
rotation matrix for all frames. Specifically, the extracted
features {h;}7_, are concatenated together and then input
to a multi-layer perceptrons (MLP). The MLP module in-
cludes three fully connected layers with the ReLU activa-
tion functions [54] to predict the rotation transformation be-
tween the camera and world frame as:

R. =MLP({h;}]_)). (11)

Combining the estimated R, with the root rotation gen-
erated by the kinematics-based 3D human body recon-
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Figure 6. Global Trajectory Estimation Model. “MLP” and
“IEF” represents Multi-layer Perceptrons and Iterative Error Feed-
back regression model [7], respectively.

struction model at each frame leads to the global rotation
{R;}1_, defined in Eq. 1. Note that the prediction of the
camera rotation can be readily extended to predicting rota-
tions for every frame considering a moving camera. Fur-
thermore, to estimate the global translation, we employ a
regression model with Iterative Error Feedback (IEF) [7]
with 3 iterations. The employed regression model takes as
input the exacted spatial-temporal features and outputs the
3D root joint positions represented in the world frame as:

Ou,t,0yt, 2¢ = IEF (hy), (12)

where ¢, ¢ and J, ¢ are position changes in the horizontal di-
rections at time frame ¢, and z; is the corresponding vertical
position relative to the ground plane. Adding the position
changes (8¢, 9,,,) over time and combining them with the
vertical position z; at different time frames, we obtain the
final global translation {T; }7_, required to specify the gen-
eralized positions defined in Eq. 1.

For training of the global trajectory predictor, we use
AMASS [51]. The training loss consists of the mean square
errors between the predicted and the ground truth rotation
and translation. The 3D motion sequences in AMASS are
3D trajectories represented in the world frame and only vary
in the body translation. We hence introduce random rotation
changes to the input to allow the model to predict the rota-
tion changes. Meanwhile, we add random Gaussian noise
to the input 3D joint positions to improve the model robust-
ness. During training, we utilize the Adam optimizer [30]
with a weight decay of 10~%. The initial learning rate is
103 and decreases to its 0.95 after every 15,000 steps. The
total number of training epochs is 20. Note that the training
of the global trajectory predictor is independent to certain
3D human body reconstruction models. Once the model is
trained, we directly combine it with the 3D reconstruction



model to generate the initial generalize positions {¢; }7 ;.

B. Creation of Phys-SMPL

Phys-SMPL characterizes the necessary physical properties
of the human body required in modeling human dynamics
through the Euler-Lagrange equations. Specifically, these
physical information includes body mass and inertia of dif-
ferent body parts and is utilized in computing the physical
terms in the Euler-Lagrange equations. In this section, we
first introduce the way of calculating the physics informa-
tion based on the geometry information provided by SMPL.
Then, we present the analytical equations for computing the
physical parameters in the Euler-Lagrange Equations.
Calculation of Body Part Volume, Mass, and Inertia
Tensor. The original SMPL builds upon 3D triangle mesh
models. The 3D triangle mesh model captures the body ge-
ometry information but not physics. To effectively model
physical properties from the geometry information, we first
compute the volume of different body parts. Specifically,
we build a close mesh for each body part by closing the
mesh along the boundary. Then, each mesh triangle in a
body part combined with the body part center can form a
3D tetrahedron, the volume of which can be easily com-
puted. Meanwhile, for each body part, its volume can be
computed as the sum of the volumes of all the 3D tetrahe-
dra belonging to that body part. Defining the origin of a
body part as its geometric center, the volume of body part ¢
can thus be computed as:

nj
Vi=> |det(P; ;1. P; 2, Pijs)l, (13)
j=1

where n; is the total number of mesh triangles included in
the " body part, P; ; 1, P; j 2, and P; ; 3 are the 3D vertex
position of the j* triangle.

Using the computed volume, we can then determine the
mass of each body part. Specifically, for the mean shape
of SMPL, we consider it has a total body mass of 70 kg
following the typical setting [84]. We compute the mass
of each body part by distributing the total body mass based
on the average human body weight distribution [56]. For
subjects with different body shapes, we calculate their body
mass based on the proportion of their body part volume rel-
ative to the mean shape. As human tissue exhibits varying
mass density, instead of scaling the mass solely based on
the body part volume, we consider the density differences
between bone, muscle, and fat to introduce additional pre-
defined scaling factors for different body parts following the
study shown in [57].

For the inertia tensor required to specify the Euler-
Lagrange equations, we need to compute the inertia tensor
for each body part relative to its root joint represented in the
body part frame. In the following, we present the analytical

equations to compute the inertia tensor I; of the i** body
part without loss of the generality. Firstly, we consider a
body part is a rigid solid body that has a uniform mass den-
sity. The entries in the inertia tensor can be denoted as

Imx Imy Imz
L= |lys I,y I,.|. (14)
Izw Izy Izz

Following the standard way to compute the inertia ten-
sor [70], an entry in I; is computed as

o / / / (@, y, 2)dwdydz, (15)
‘/i (z,y,2)€ES;

where m;, V;, and S; denotes the mass, volume, 3D integral
region of the body part, respectively. Then,

y2 + 22 for I,
a? + 2% for Iy,
22 +y? forl,,
f(z,y,2) = - 19
-2y fol‘ Iwy and Iyaj
— 1z for I, and I,
—yz for Iyz and Iyz

As a body part is represented as a triangulate mesh, the in-
tegral can be computed as the sum of the integral computed
within each tetrahedron of the body part as

Vi Z ,Y, 2)dxdydz,  (17)
Vi Jj=1 (z,y,2)€S;,;

where S; ; is the 3D integral region of the 4" tetrahedron,
and n; is the total number of mesh triangles of the ¢ body
part. Given that each body part is assumed to have a uni-
form mass density, the Center of Mass (COM) coincides
with the centroid of that body part. As shown in [27], the
integral over the j*" tetrahedron of the i*” body part can be
computed as

S (FPija) + f(Pijo) + f(Pijs) + f(Pij1+Pija+Pijs)),
(18)
where P; ; 1, P; ; 2, and P; ; 3 represent the 3D vertex po-
sitions of the j*" tetrahedron in the body frame with regards
to the COM.

As introduced above, the calculation of the body mass
and inertia tensor is based on the study of human anatomy
and is accomplished using SMPL’s geometry information.
This approach avoids the use of unrealistic proxy bodies and
establishes a direct mapping between the physics informa-
tion and the shape parameters.

Derivation of the Physical Parameters in the Euler-
Lagrange Equations. The physical parameters in the
Euler-Lagrange equations are functions of the generalized



positions, as well as the body mass and inertia. In this sec-
tion, we present analytical equations to compute these phys-
ical parameters, including the contact Jacobian J ¢, the gen-
eralized mass matrix M(q; m, I), the gravitational force
g(q; m, I), and the generalized bias force C (q, q; m, I).

For the contact Jacobian, it is the Jacobian matrix that
maps a contact force represented in the Cartesian coordi-
nates to the generalized coordinates. The contact Jacobian
matrix only relates to the position of a contact point. For the
human body, it can receive multiple contact forces. Below
we derive the contact Jacobian matrix applied to one contact
position C' without loss of generality.

As shown in [35], the contact Jacobian can be computed
as,

Jo = [ez e, e, & ] , (19)

where e, e,, and e are the unit vectors along the x, y, and

z directions, respectively. e, e,, and e, correspond to the

global translation defined in the generalized position q. For

the other columns corresponding to joint rotations, they are

computed as

€ — {Ahi XA Yo, ifiis a'parent joint, 20)
0, otherwise.

where 4h; is the rotation axis of q; represented in the world
frame A, and is computed as

Ah; = Ro;—18h;. 2y

Ry;_1 is the rotation matrix describing the transformation
from the body part frame to the world frame. Moreover,
ATr;c is the 3D position of the contact point relative to its
root joint ¢ represented in the world frame. 4r;c is com-
puted as

ATic =10 — Py, (22)

where ro and P; are 3D positions of the contact point and
the root joint represented in the world frame, respectively.

For the generalized mass matrix M(q; m,I), itis a
function of the body part mass m, inertia I, and the gen-
eralized position q. The generalized mass matrix can be
computed as the sum of the generalized mass of each indi-
vidual body part as:

24
M(q; m,I) =Y JE mJsn +I5 ,Ronln R, Irn
n=1
(23)
where Jg,, is the Jacobian matrix computed in the world
frame. The calculation of Jg , is similar to the contact Ja-
cobian matrix but considers the root joint of a body part as
the target position to computed the Jacobian matrix. More-
over, Ry, is the pose of the n'” body part, and J  ,, is the
angular Jacobian computed as

Jrn=[0 0 0 & --- 0], (24)

where
£ = ah;, ifiis a.parentjoint, 25)
0, otherwise.
For the gravitational force term, it is computed as

24
g(gy mI) = > JL mug, (26)

n=1
where J g ,, is the Jacobian matrix of the n*" body part and

g is the gravitational acceleration.
For the generalized bias force C (q, q; m, I), it is com-
puted as

24

C(a,a mI)=> I muJsng 27
n=1

+ 3%, (Ro L RY I rnd (28)

+ Jrnd X RonIuRY IR nd),  (29)

where Jg,, and J, are the time derivatives of the linear
and angular Jacobian. Specifically,

Jsn=1[0 0 0 & --]. (30)

For the none-zero terms,
&€, = Roi_15h; X aric (3D
+ Roi—18h; x4 Tic (32)

where 1, can be computed through finite difference. The
time derivative of the rotation matrix is computed as

Roi-1 = (Jri—14)*Roi—1 (33)

On the other hand, the time derivatives of the angular Jaco-
bian can be computed similarly as

Jrpn=[0 0 0 Rpiish; --]. (34)

In summary, Phys-SMPL computes the body mass and
inertia information directly from SMPL specified by its
shape parameters. The calculation of the physical terms
in the Euler-Lagrange equations is also fully-differentiable,
facilitating the seamless integration with physics and deep
learning models. Additional background of the Euler-
Lagrange equations can be found in [35].

C. Selection of Body Contact Regions

We consider that the human body receives contact forces
primarily from the ground. To effectively and efficiently
model the contact behavior, we first investigate the body re-
gions that frequently contact with the ground. We employ
the motion sequence in AMASS and count the frequency of



Figure 7. Contact Map. The lighter color (yellow) of a vertex
indicates the higher frequency of contact with the ground. The
modeled contact vertices are marked in black.

Rec. Error Phys. Plausibility

MIJE P-MJE ACCL VEL FS GP BOS

SPIN [33] 66.2 40.8 18.1 8.2 8.812.5 237
+PoseBert [2] 643 41.8 53 4.1 9.215.7 26.1
+PhysPT (Ours) 60.7 40.3 2.5 3.6 3.0 2.1 314

IPMAN [76] 63.1 410 172 7.8 8.611.9 28.6
+PoseBert [2] 622 415 53 42 9.111.9 29.8
+PhysPT (Ours) 59.4 40.2 25 3.6 3.0 2.3 36.1

Method

Table 5. Evaluation on Human3.6M using Different
Kinematics-based 3D Reconstruction Models. The results of
other works are from their officially released models. BOS is mea-
sured in percentages, with larger values indicating better perfor-
mance, while the other metrics prefer smaller values.

the vertices in contact with the ground. We visualize the re-
sults in Figure 7. As expected, not all vertices have frequent
contacts with the ground. On the other hand, modeling the
contact for all vertices can result in significant computa-
tional overhead. Following existing approaches, we model
a subset of vertices for each body part that frequently come
into contact with the ground. The chosen vertices are high-
lighted by black colors in Figure 7.

D. Improvements over Different Kinematics-
based 3D Body Reconstruction Models

PhysPT can be seamlessly applied to different kinematics-
based models to enhance their motion estimates. To demon-
strate this, besides employing CLIFF (evaluation is dis-
cussed in the main manuscript), we here report the improve-
ments over two recent image-based 3D human body recon-
struction methods, SPIN and IPMAN. SPIN and IPMAN
are both model-based 3D human body reconstruction mod-
els that directly predict the 3D body pose and shape param-
eters from input images. IPMAN can produce more sta-
ble 3D body pose estimates than SPIN due to the incorpo-

Training on
Human3.6M

D&D [39] Yes 525.3 533.9
PhysPT (Ours) No 335.7 343.5

Method G-MPJPE (]) G-MPVPE (/)

Table 6. Evaluation on Global Motion Recovery. The evaluation
is on the test set of Human3.6M. The units of G-MPJPE and G-
MPVPE are in mm.

ration of an intuitive-physics loss during training. To fur-
ther demonstrate the effectiveness of PhysPT and compare
with IPMAN, we follow IPMAN and compute the Base of
Support (BOS) metric to evaluate the physical plausibility
in terms of pose stability. We present the results in Ta-
ble 5 and compare the improvements achieved by our ap-
proach with those produced by PoseBert. As demonstrated,
when integrated with both SPIN and IPMAN, PhysPT ef-
fectively improves the reconstruction accuracy and substan-
tially enhances the physical plausibility. For instance, when
evaluating the reconstruction accuracy, adding PhysPT on
top of SPIN shows a reduction in MJE from 66.2mm to
60.7mm, and on top of IPMAN, it experiences a decrease
from 63.1mm to 59.4mm. In terms of physical plausibility,
incorporating PhysPT with SPIN results in a reduction of
15.6 mm/frame? in ACCL, and with IPMAN, it exhibits a
reduction of 14.7 mm/frame?. The improvements achieved
by PhysPT are also more pronounced than PoseBert. Fur-
thermore, when assessing stability, SPIN initially exhibits
poor performance with a lower BOS than IPMAN (23.7%
vs. 28.6%). By integrating with PhysPT, SPIN can generate
a higher BOS than IPMAN (31.4% over 28.6%). The im-
provements in stability are also evident when incorporating
PhysPT with IPMAN. PhysPT significantly enhances the
motion estimates by effectively leveraging the Transformer
model and integrating physics principles and it applies to
various kinematics-based 3D reconstruction models.

E. Evaluation on Global Motion Recovery

This section demonstrates the accurate global motion recov-
ery achieved by our approach. We compute the Mean Per-
Joint Position Errors and Mean Per-Vertex Position Errors
in the world frame (G-MPJPE and G-MPVPE). Following
the typical evaluation protocol [39, 94], we use a 10-second
sliding window with the root translation aligned with the
ground truth at the starting frame of each window. We re-
port the results in Table 6 with comparison to the physics-
based SOTA. As shown, our approach produces much lower
errors than the SOTA. For example, our approach achieves
335.7 mm of G-MPJPE, reducing D&D’s 525.3 by nearly
36%. Moreover, it’s worth noting that our method achieves



(&

(c-i) [

S

A
(@) f

(b)

/3 Coa

(c-ii) \g %
] 1

A

(d-ii) ’Q J
& o+ S

Figure 8. Visualization of the Inferred Motion Forces. The motion sequences (a), (b), (c), and (d) are from AMASS [51]. For sequence
(c), (c-1) and (c-ii) are visualization of the same figure from different views. For sequence (d), (d-i) and (d-ii) are visualization of the forces
generated with and without employing the continuous contact force model, respectively. In each image, the contact forces are visualized
via a 3D vector on each contact point (green lines ended with red dots). The joint actuations are characterized by three vectors along the
three Euler angles of a joint (green lines ended with blue dots). Meanwhile, the magnitudes of joint actuations are visualized by different
colors at different body parts, with lighter colors indicating larger magnitudes.

better performance without utilizing any 3D data from Hu-
man3.6M during training.

F. Quality of the Inferred Motion Forces

The motion forces derived from the Euler-Lagrange equa-
tions using the physics-based body representation and the
contact force model offer valuable insights into human dy-
namic behaviors. Utilizing them enables a more effective
incorporation of the physics equations. We here discuss
the quality of the inferred motion forces. In Figure 8§,
we present example forces generated from different mo-
tion sequences in AMASS. As illustrated, the inferred mo-
tion forces sensibly indicate the direction and magnitude of
the underlying forces. For example, during normal stand-
ing (Figure 8-a, column 1), the contact forces are evenly
distributed between both feet. When leaning to the left or
right, the center of gravity shifts, and larger contact forces
are displayed on the left or right foot accordingly (Figure 8-
¢, columns 1-2). Additionally, the contact forces applied to
different body parts, such as those experienced on the feet
and hips, are effectively modelled (Figure 8-b, columns 2-
3). On the other hand, the inferred joint actuations clearly
indicate the rotation direction and force magnitudes. For ex-
ample, the spine joint actuation in the horizontal direction
controls rotation along the horizontal axis. It changes direc-

tion when rotating the upper body from left to right (Fig-
ure 8-c, columns 1-2). Moreover, large forces are shown
at the shoulder joints when extending the arms (Figure 8-a,
columns 2-3), or at the spine joints when rotating the upper
body (Figure 8-c, column 3).

To demonstrate the benefits of utilizing the continuous
contact force model, we further compare the forces inferred
with and without employing the contact force model. As
illustrated in Figure 8-d, exploiting the contact force model
results in a more stable estimation of the forces. Addition-
ally, when not using the contact force model, a contact sta-
tus must be determined beforehand in a heuristic manner.
For example, a point is considered in contact if its distance
to the ground is less than 3 cm, and its velocity is less than 1
m/s [90]. In contrast, utilizing the contact force model elim-
inates the need for estimating the contact status and directly
infers the contact forces based on a spring-mass model.
Utilizing the contact force model can avoid the problems
caused by incorrect estimations of the contact status (Fig-
ure 8-d-ii, column 3).

G. Action-wise Recognition Performance

In the main manuscript, we demonstrate that combining
motion and force estimates leads to the best model perfor-
mance. In this section, we discuss the action-wise evalua-



Input

Baseball Clean Pull Strum Baseball Golf Push Tennis BenchJumping Sit Tennis
Pitch &Jerk Ups Guitar Swing Swing Ups Forehand Press

. Jump.
Ups Serve Bowling Rope Squats All

Jphys 100.0 95.6 94.9 100.0 98.3 100.0 99.0 93.5

F 100.0 933 97.0 97.8 96.6 97.4 98.1
Jpnys+F 100.0 100.097.0 100.0 98.3 100.0 98.1

98.0 97.1 964 97.6 94.9 96.8
90.0 929 88.1 97.6 959 944
98.0 97.1 97.6 97.6 96.9 98.0

Table 7. Action-wise Evaluation on PennAction Utilizing Different Model Inputs. The numbers represent recognition accuracy in
percentages. Actions that show higher accuracy when utilizing forces (F) compared to utilizing the physics-based estimation of 3D body
joint positions (J ) are marked in green. The term “All” denotes the average accuracy over all actions.

tion results, providing further insights into the benefits of
utilizing forces for understanding human behaviours.
Action-wise Evaluation. The action-wise evaluation re-
sults are summarized in Table 7. As shown, only using
forces as model input produces a lower average recogni-
tion accuracy compared to utilizing the physics-based mo-
tion estimates. Nonetheless, utilizing forces yields higher
accuracy for certain actions, such as “Pull Ups”, “Bench
Press”, and “Squats”. These actions are distinctive particu-
larly in their underlying motion forces. Specifically, “Pull
Ups” and “Bench Press” involve similar body movements,
such as raising the arms with bending legs. However, their
underlying motion forces are significantly different. “Pull
Ups” involves body lifting, while “Bench Press” involves
body lying on a bench. For these actions, the estimated
forces provide additional insights towards the human dy-
namic behaviours, and when combined with the 3D position
data, they can significantly improve the final recognition ac-
curacy. For example, the recognition accuracy of “Bench
Press” increases from 91.4% to 97.1% by further adding
the forces as model input.

We here present the implementation details for repro-
ducibility. Implementation Details. For our experiments
on PennAction, we follow the established protocol that use
the official split to divide the training and test sets. The
skeleton graph is defined in the SMPL joint format. For
the motion estimate input, they are 3D body joint positions.
For the force input, they are estimated force values, where
the contact forces are transformed into the generalized co-
ordinates to align with the defined skeleton graph. When
combining the motion and force estimates, we employ a
decision-level fusion. The models are trained by minimiz-
ing the cross-entropy loss. We utilize the Adam optimizer
with a weight decay of 10~%. We train the models for 200
epochs with an initial learning rate of 10~* and decreasing
to its 0.8 after every 40 epochs. The batch size is 128.
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