
Prompt3D: Random Prompt Assisted Weakly-Supervised 3D Object Detection

Supplementary Material

Overview

This supplementary material is organized as follows:

• In Sec. A, the methodology for constructing our 3D shape
library is detailed.

• Sec. B describes the specific process of virtual scene gen-
eration as discussed in the main paper.

• More experimental results are provided in Sec. C.
• Additional visualizations of the detection results are pre-

sented in Sec. D.
• Sec. F includes an analysis of parameter impacts, focus-

ing on the loss weight.

A. 3D Shape Repository

Construction of Prompts. To create a 3D shape library,
a wide variety of prompts for each category are produced
using the large language model ChatGPT. Specifically, to
generate prompts for a single category, the command (in-
put prompt) provided to ChatGPT adheres to a consistent
format:

“Please help me write N nouns about KEYWORD and
optionally use clauses to describe the shape design of the
KEYWORD. Each noun should not describe anything other
than the shape, and start with a or an.”

Here, N denotes the total number of generation prompts
required, and KEYWORD specifies the target category, char-
acterized by a singular term like “table”. For instance, var-
ious prompts generated for the “bookshelf” category are
showcased in Tab. S1. These randomly generated prompts
cover a wide range of shapes pertaining to specific object
types, thus ensuring considerable diversity. The prompts
are converted into their respective shapes directly, bypass-
ing any form of intermediate filtering or processing.

Construction of 3D Shapes. With the aid of Shap-E [2],
these generated prompts are subsequently converted into
3D meshes. The architecture of Shap-E is divided into
two phases: the first phase involves training a Transformer-
based encoder to generate Implicit Neural Representation
(INR) parameters for the 3D model, followed by training
a diffusion model utilizing the encoder’s output. Detailed
specifics of this architecture are elaborated in [2]. As a re-
sult, an extensive and varied 3D shape library has been me-
thodically established. This library comprises 22 classes,
which are detailed in Fig. S1.

Keyword bookshelf

Output

An angular bookshelf with adjustable shelves
An angular bookshelf with adjustable shelves
An asymmetrical bookshelf with asymmetrical compartments
An arched bookshelf with curved shelves
An asymmetrical bookshelf with staggered shelving units
An artistic bookshelf with painted motifs
An airy bookshelf with open back
An adjustable bookshelf with customizable shelving options
An angular bookshelf with geometric patterns
An antique bookshelf with brass accents
. . .

Table S1. Some examples of the generated prompts for the cate-
gory “bookshelf”.

B. Generation of Synthetic Scenes

Here we give a detailed construction process of the virtual
scene.

Data Preparation. Before assembling the shapes into a
virtual scene, we need to do some preparatory work.

Firstly, we calculate the height (support z) of the sup-
porting surface for each generated shape. This involves
identifying points where the dot product of the normal vec-
tor with [0, 0, 1] exceeds 0.88, indicative of plane points. We
then extract the z-axis coordinates of these points to form a
one-dimensional array z list, which is sorted in ascending
order. Denoting the number of points as z num, we se-
lect a subset choose point = z list[int(z num × 0.94) :
int(z num×0.97)] and use np.mean(choose point) to de-
fine support z. If the count of choose point is less than
15, the range is adjusted to (0.90, 0.95). If it is less than
20, the range is modified to (0.85, 0.95). Should the count
remain low, we use the range (0.80, 0.95), and if it is still
insufficient, max(z list) is taken as support z.

Secondly, we compute the Minimum Enclosing Rectan-
gle (MER) of each shape.

Thirdly, we assess whether a shape can function as a
supporter. This is determined by extracting points whose
distance from the height support z is less than one-tenth
of the object’s height. We then calculate the surface area
(surface area) of the MER formed by these points. De-
noting the MER from the previous step as MER area, if
surface area > MER area × 0.9, the shape is deemed
a supporter, and the Is supporter value is set to 0.

Additionally, for mesh-version shapes, we evaluate their
watertightness. The majority of meshes produced by Shap-
E are characterized by their watertight properties, contrast-
ing with those from ModelNet, which frequently display



An acrylic bathtub with a 
glossy finish.

An organic-shaped bathtub 
with a natural appeal.

A square bed, ideal for a minimalist 
and symmetrical design.

A bunk bed, maximizing space 
and perfect for shared bedrooms.

An oversized cup with a giant 
capacity.

A diamond-shaped cup with 
faceted sides.

An aluminum bench 
with a sleek finish.

An antique bench with 
ornate woodwork.

An hourglass-shaped bottle 
with a thin middle..

An elegant bottle with a 
slender profile.

A rounded chair with a 
circular seat.

A spindle chair with vertical turned 
supports and a curved backrest.

An oversized cup with a giant 
capacity.

A diamond-shaped cup with 
faceted sides.

Lace curtains. Wave curtains.

A minimalist desk with a sleek 
appearance.

An acoustic wooden door, 
designed to reduce noise 

transmission with wooden panels.

A coastal-themed dresser with 
seashell accents.

An opulent dresser with crystal 
knobs.

An acrylic keyboard with a 
transparent body.

An arcade-style keyboard with 
large buttons.

A conical lamp with a 
hammered metal surface.

A cylindrical lamp with a pleated 
fabric shade.

An augmented reality laptop 
with a transparent display.

An aluminum laptop with a 
diamond-cut finish.

A bezel-less monitor with an 
edge-to-edge display.

A widescreen monitor with an 
expansive view.

A square nightstand with 
sharp edges.

A lighthouse nightstand with a 
maritime theme.

An avant-garde sofa with 
tufted leather upholstery.

An animal-shaped sofa that 
sparks imagination.

An angular kitchen stool with 
a metal footrest.

An acrylic outdoor counter stool with a 
glossy finish.

A contemporary glass table. A pedestal base dining table

An curved toilet with an 
ergonomic seat.

An eco-friendly toilet with 
sustainable materials.

A sleek wardrobe with a 
lacquered finish. A wardrobe with frosted glass doors.

An accordion door, consisting of 
multiple hinged panels that fold 

together.

A circular desk with a glass top.

Avocado Tree: A tree with large, 
leathery leaves and pear-shaped fruits.

Globe: A plant with a rounded 
and globe-like shape.

Figure S1. The visualized results of the reconstructed 3D shapes.
Our 3D shape library includes 22 common categories in indoor
scenes. Left column from top to bottom: bathtub, bench, bottle,
cup, desk, dresser, lamp, monitor, plant, stool and toilet. Right
column from top to bottom: bed, bookshelf, chair, curtain, door,
keyboard, laptop, night stand, sofa, table, and wardrobe.

lower quality. This inferior quality is typically indicated by
an abundance of boundary edges or non-manifold vertices.

Raw scene s1 (a) s1 (b)

“chair”

Different prompts about “chair”

Figure S2. Details of the segmentation of the real scene. s1 (a)
involves segmenting the raw scene into multiple segments based
on the mesh’s geometric properties; s1 (b) involves merging seg-
ments by combining smaller segments with adjacent segments.

Lastly, we extract weak annotation information from the
real scene. The weak annotation for each object is repre-
sented as [(x, y, z),modelnet id].

Segmentation of The Real Scene. The raw real scene in
mesh format is aligned to the coordinate plane using the
alignment matrix from the dataset, ultimately obtaining a
point cloud mesh vertices of dimension n × 3. Points
in mesh vertices with a z-axis less than 0.05 are consid-
ered ground points, and their average value is taken as the
ground height ground z; if there are no ground points, then
ground z = 0. We segment the raw scene following the
pipeline of [1], resulting in typical over-segmentation due to
its unsupervised nature. As shown in Fig. S2, the segmen-
tation process can be divided into 2 parts: s1 (a) involves
segmenting the raw scene into multiple segments based on
the mesh’s geometric properties; Step s1 (b) involves merg-
ing segments by combining smaller segments with adjacent
segments. Each color represents a segmented point set, i.e.,
a segment (seg). Calculate the center of each seg along with
its maximum and minimum values in the three coordinate
dimensions. If the number of ground points in a seg ex-
ceeds 30 or half of the total, label it as -1, otherwise as 0 (to
be later labeled as another object).

Initial Generation of The Virtual Scene. Here, we pro-
vide more details for each step from segmentation (Fig.3
s1) to the initial composition (Fig.3 s2).

We first collect the segs belonging to each object in the
real scene (Fig.S3 s2 (a)). For each category, we obtain
average 3D dimensions: dxavg, dyavg , dzavg . Compute
radiusavg = (dxavg + dyavg)/2. In real-world scenar-
ios, consider the centroid of an object as the focal point.
Commence by extracting a point cloud within a sphere of
radius 0.4 × radiusavg centered on this point. Should the
number of points within this sphere exceed 5, the selection



Detector Setting Method batht. bed bench bsf. bot. chair cup curt. desk door dres. keyb. lamp lapt. monit. n.s. plant sofa stool table toil. ward. mAP@0.5

VoteNet

full sup. FSB 69.8 76.9 6.7 26.0 0.0 67.6 0.0 10.2 30.0 13.3 21.1 0.0 15.5 0.0 19.6 47.9 3.1 70.4 10.1 38.9 85.0 2.7 28.0

weak sup.

WSB 0.0 11.5 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.2 0.7 0.0 0.2 0.0 0.1 2.5 0.0 0.8
WSBP 37.1 63.6 0.0 5.7 0.0 26.4 0.0 0.1 15.9 1.7 2.7 0.0 1.4 0.1 5.9 31.3 0.6 36.6 11.3 4.3 7.4 0.0 11.5
BRP 36.8 15.2 1.2 6.9 0.0 42.7 0.0 0.0 4.4 1.3 2.1 0.0 9.0 0.0 2.7 31.4 1.3 14.4 4.1 8.3 51.6 0.0 10.6
BRM 9.6 59.2 0.2 12.8 0.0 37.9 0.0 0.0 22.1 1.0 6.2 0.0 10.6 0.0 2.1 44.6 2.7 33.0 2.0 25.3 57.0 0.1 14.8
Ours 4.0 66.4 2.2 10.1 0.0 35.2 0.0 0.4 20.2 4.1 5.2 0.0 14.4 0.0 10.7 23.9 2.3 42.4 6.9 20.0 63.9 0.4 15.1

GroupFree3D

full sup. FSB 75.7 75.6 4.5 28.4 0.0 75.3 0.0 20.3 47.4 24.7 29.5 0.3 20.4 0.0 37.5 61.4 3.7 74.6 37.1 51.1 96.2 11.7 35.2

weak sup.

WSB 1.9 24.7 0.0 0.1 0.0 31.2 0.0 0.0 0.1 0.1 0.0 0.0 6.5 0.0 2.1 1.5 0.1 2.6 2.0 0.5 54.3 0.0 5.8
WSBP 51.4 41.3 0.0 0.5 2.4 41.2 0.0 0.4 2.1 0.3 1.7 0.0 23.5 4.2 14.5 38.4 0.4 6.5 17.0 0.9 71.0 0.0 14.4
BRP 83.6 79.1 0.0 10.8 0.0 53.5 0.0 0.0 0.0 1.6 3.7 0.0 19.6 50.0 6.5 60.0 16.7 21.1 5.7 14.6 90.1 0.0 23.5
BRM 83.3 65.0 0.0 4.1 0.0 56.2 0.0 0.5 11.8 2.1 16.7 1.2 23.8 12.5 16.0 80.0 17.5 42.2 28.6 28.0 99.2 0.0 26.8
Ours 71.4 72.6 0.1 12.1 0.0 52.9 0.0 4.8 32.5 6.3 22.8 0.0 20.6 3.1 32.9 57.0 11.6 71.3 32.5 30.5 100.0 21.5 29.8

Table S2. 3D object detection results on ScanNet validation set, evaluated using mAP@0.5. Experiments were conducted with VoteNet
and GroupFree3D detectors. Following Xu et al. [3], we use 22 categories to assess performance on ScanNet. Best scores in bold.

Different prompts about “chair”

Raw scene“chair”

Initial composition   Seg Collecting

𝒔𝒔𝟏𝟏

𝒔𝒔𝟐𝟐 (a)Segmentation 

𝒔𝒔𝟐𝟐 (𝒃𝒃)

Figure S3. Details of the initial generation of the virtual scene.
s2 (a): collecting relevant segs for each real object; s2 (b): load-
ing the closest virtual object based on MER of each real object.

is deemed satisfactory. Otherwise, incrementally enhance
the radius ratio from the initial value of 0.4 to 0.5, 0.6, and
0.7, respectively, for subsequent trials. In the event that
these iterative attempts result in a null set, redefine the ra-
dius based on the larger of the two averages, maxavg =
max(dxavg, dyavg), and reassess the point count within a
distance less than prop×maxavg from the object’s centroid.
Initiate this process with prop set to 0.4 and incrementally
increase it by 0.1 until the acquired point count surpasses 4.
Now, for each object in real scenes, we find all points within
a certain radius of its center, then identify the segs these
points belong to. Should the z-axis span of a seg exceed
1.5×max(dxavg, dyavg), or if the z-coordinate of its center
is below 0.15 or less than 0.2 × dzavg, it will be excluded.
Additionally, exclusion is warranted if the maximum dis-
tance between the object and seg centers in the x and y
dimensions surpasses 1.5 × max(dxavg, dyavg), or if the
minimum distance is greater than 3.5×min(dxavg, dyavg).
The same applies if the difference in the z-axis span is more
than 1.5 × dzavg . In cases where a seg is associated with
two objects, it will be assigned to the one that is closer.

Then, we select the shape from our 3D shape reposi-

tory that best matches the object in the real scene (Fig.S3
s2 (b)). After identifying non-intersecting segs for each
object, extract all related point clouds based on these segs.
Project these point clouds on the xy-plane to calculate the
MER for the real object, represented as (l, s, θ), where l is
the length, s is the width, and θ is the rotation angle. If l
is greater than 5×maxavg or less than 0.25×minavg, we
reset (l, s) to (maxavg,minavg). Calculate the aspect ratio
ls ratio = l/s. Find the 3d shape from the library with the
closest ls ratio.

At last, we replace the real object with the selected
shape. The 3D mesh has already been preprocessed
with MER data (l, s, θ, is supporter, support z). Now
we determine the span of the three coordinate axes, de-
noted as ddx, ddy, and ddz, for a given shape, with
pc mean representing the centroid of this shape. Sub-
sequently, we apply a transformation to the point cloud
to reposition its centroid at the origin of the coordi-
nate system. For each object in real scenes, calculate
the set [(x, y, z), scale, obj path, is supporter, θ,MER,
supporter z].

Here, (x, y, z) is the object center. supporter list =
[“desk”, “bed”, “bookshelf”, “night stand”, “table”].

is supporter is true if the object type is in the supporter
list, otherwise false (in which case support z is invalid).
obj path is the path of the shape, and MER belongs to the
real object. Compute ∆θ as the difference between the θ of
the real object’s point cloud and that of the virtual object.
Rotate the 3D shape by an angle of ∆θ and subsequently
calculate the three-dimensional spans post-rotation, denoted
as ddx, ddy, and ddz. Let the three-dimensional spans of
the shape’s point cloud be dx, dy, and dz.

For a generic category of the real object, define
scale z = (z−ground z)×2

ddz . If the category is either table or
chair and the minimum height of the real object is greater
than 0.15, then scale z = zmax

ddz . If the category belongs
to one of [“monitor”, “plant”, “lamp”, “cup”, “keyboard”,
“bottle”, “laptop”], then scale z = (zmax−z)×2

ddz . Then,
we can define scale = ( dx

ddx ,
dy
ddy , scale z). If the ob-



(a) WSB (b) BR (c) Ours (d) Ground Truth

Figure S4. Additional visualization of detection results, with zoomed-in details on the right for clarity. Comparing (a) WSB, (b) BR, (c)
Our Prompt3D, and (d) ground truth labels on the ScanNet validation dataset.

ject category is among [“door”, “curtain”], then scale =
(1, 1, scale z); if the category is “keyboard”, then scale =
( dx
ddx ,

dy
ddy ,max(scale z, 1.5×dx×dy

ddx∗ddy )). supporter z = z +

scale z × (support z − pc mean[2]). Now we get the re-
quired information for each object in the synthetic scenes.

Adjustment of The Virtual Scene Layout. First,
we conduct the gravity constraint. In the pre-
vious step, each object in the synthetic scenes
is represented by [(x, y, z), scale, obj path,
is supporter, θ,MER, supporter z]. We also achieve
the value of ground z. The gravity constraint involves
adjusting each synthetic object’s z. Let pc txt repre-
sent the expansion of the number of point clouds of a
real object into a one-dimensional vector across three
dimensions. Then, process all the supporters. Adjust
new z = ground z − scale z ∗ min(pc txt[:, 2]). Next,
process supportees. For non-supporters, check if their
center point coordinates fall within the MER of a supporter.
Find the corresponding supporter, and only search for
supporters for these objects: [“monitor”, “plant”, “lamp”,
“cup”, “keyboard”, “bottle”, “laptop”]. For those not found
or not to be searched for, use the operation for supporters to
place them on the ground (for “lamp”, no action is taken).
Otherwise, place them on the supporter’s supporting sur-
face: new z = new positions[choosed supporter][6] −
sz ∗ min(pc txt[:, 2]). we also obtained a stage map,
with unsupported objects as keys, and the value is a list of
objects placed on the key (which may be empty).

Secondly, we conduct the collision constraint. First,
find the horizontal center (x, y) of the floor points on the
ground. For all unsupported objects, sort them by their dis-
tance from the center of the ground. Process each object
in turn. If an object overlaps with some previous objects,

calculate the direction of movement. If the distance to an
object is (dx, dy), then sum up ( 1

dx ,
1
dy ) for all colliding

objects to find the direction of movement. Move the object
in this direction until it no longer collides. For supported
objects, follow the movement of the object supporting it.
Then, sort them by the distance from the center of the sup-
porting object. Process each object in turn. If an object
overlaps, calculate the direction of movement and move it
accordingly until the collision is resolved.

C. Detection Results of mAP@0.5

We assessed the efficacy of our weakly supervised method
using the mAP@0.5 metric. The quantitative findings are
delineated in Tab. S2. On the ScanNet validation set, the
trend in mAP@0.5 results echoes that of mAP@0.25. No-
tably, our approach outshines all competing methods listed
in Tab. S2. When VoteNet is employed as the detector,
our method shows a 14.3% increase in mAP@0.5 com-
pared to WSB, evidencing its capability to reduce infor-
mation loss in the weakly supervised setting. Additionally,
our technique exceeds the performance of the BR approach,
which is dependent on synthetic scenes created from Mod-
elNet40. When utilizing GroupFree3D as the detector, our
approach demonstrates even more pronounced superiority
under the weakly supervised setting. Our method registers a
24.0% improvement in mAP@0.5 compared with the WSB
method and significantly surpasses the BR approach by 3%
points.

Moreover, pre-training two distinct object detection net-
works with our synthesized scenes has proven to enhance
their performance in weakly supervised settings. This im-
provement is likely due to the richer 3D shapes and the ad-
ditional prior information provided by our synthetic scenes
for the pre-training phase of object detection models.
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Figure S5. The mAP@0.25 results w.r.t. λD . When utilizing
VoteNet as the detector, our method attains its peak performance
when λD is set to 0.1. On the other hand, when employing
GroupFree3D as the detector, setting λD to 1 yields the optimal
performance.
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Ours Random ∆𝜽𝜽

Figure S6. Synthetic Scene built under various settings of θ.

D. Additional Visualization Results

In Fig. S4, we provide additional visualization of the detec-
tion results of WSB, BR, and our method using VoteNet as
the detector. Our method consistently succeeds in scenarios
where WSB and BR falter. These results further affirm the
benefits of label augmentation through virtual scenes gen-
erated from prompts, demonstrating the effectiveness of our
approach in improving detection accuracy.

Factor Setting mAP@0.25

z
0.01 36.2
0.05 37.4
0.1 34.0

θ
0 34.4

Random θ 34.8
∆θ 37.4

Table S3. Ablation study on SSG.

E. More ablation studies of SSG

In the main paper, we focus on testing the key hyperparam-
eters/modules affecting performance. Here we show more
details about the settings of the SSG module.

Hyperparameters of SSG We carefully differentiate be-
tween parameters of the SSG module with physical signif-
icance and those offering adaptability for diverse datasets.
For instance, in real scenes, points with a z-axis value z less
than 0.05m are considered ground points. We kindly pro-
vided additional experiments regarding z in Tab. S3. Other
parameters cover a wide search range, are determined by
the inner parameter of the dataset. For instance, in Sec B,
we gradually expand the search radius to collect all segs
belonging to real objects. In short, SSG hyperparameters
are fixed and versatile.

Heading Consistency in SSG For orientation align-
ment, the heading information is not required. Orientation
is refined through the calculation of angular difference (∆θ)
between the MER of real and synthetic objects, ensuring a
harmonious alignment between real and synthetic entities.
We conducted ablation experiments about the rotation an-
gle θ to validate the effectiveness of our method (shown in
Fig. S6 and Tab. S3).

F. Loss weight

The loss function for training the network mentioned in the
main text is:

Ltotal = LR + λSLS + λDLD, (1)

Following the prior work [3], we set λS = 0.1. To ascer-
tain the optimal value for the loss weight λD, we conducted
tests with various values while maintaining all other hyper-
parameters constant.

As depicted in Fig. S5, optimal performance is attained
when λD is set to 0.1 with VoteNet as the detector. Con-
versely, when employing GroupFree3D as the detector, the
model reaches its peak efficacy at λD = 1. Consequently,
we have determined the values of various coefficients in the
loss function.
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