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Supplementary Material

Considering the space limitation of the main text, we
provided more results and discussion in this supplementary
material, which is organized as follows:
• Section A: Explanations and Discussions.

– Section A.1: Additional Implementation Details.
– Section A.2: Detailed Generation Process of Pseudo

Labels.
– Section A.3: Random Object Scaling vs. Complemen-

tary Augmentation.
– Section A.4: Limitations and Future work.

• Section B: Additional Ablation Studies.
– Section B.1: Sensitivity Analysis of Key Hyper-

parameters.
– Section B.2: Analysis of Cross-domain Triplet Loss.
– Section B.3: Analysis of BoxReplace.
– Section B.4: Analysis of Proposal Generation Strategy.

• Section C: Qualitative Results.
– Section C.1: Detection Performance.
– Section C.2: Direct Removal vs. Complementary Aug-

mentation.
– Section C.3: Interpolation and Extrapolation.

A. Explanations and Discussions.
A.1. Additional Implementation Details

Throughout both the pre-training and self-training pro-
cesses, we follow [6, 7] to employ commonly used data aug-
mentation techniques, which encompass random flipping
(along the X and Y axes), random global scaling, random
global rotation, random object scaling, and random object
rotation. We utilize the entire training and validation sets
of the NuScenes[1] and KITTI [2] datasets, while for the
Waymo [4] dataset, we randomly sample 50% of the train-
ing set along with the entire validation set.

A.2. Detailed Generation Process of Pseudo Labels

In a two-stage detector, the generation of pseudo labels, i.e.
3D boxes, involves two stages. In the first stage, a set of ba-
sic proposals are generated along with their corresponding
IoU confidence scores. Each proposal represents a prelim-
inary candidate pseudo box that may contain an object. In
the second stage, the extracted Region-of-Interest (RoI) fea-
tures from each proposal are utilized to refine pseudo boxes.
Subsequently, a Non-Maximum Suppression (NMS) is ap-
plied to select the most confident pseudo boxes, while sup-
pressing others that exhibit high overlap. Throughout this
process, the presence of IPNI introduces imprecise propos-

als and confuses the RoI features across different object cat-
egories, as discussed in the manuscript. Considering that
pseudo labels are derived from the basic proposals and their
corresponding RoI features, it is evident that IPNI signifi-
cantly degrades the overall quality of pseudo labels, which
is also supported by Fig. 6 and Fig. 7.

A.3. Random Object Scaling vs. Complementary
Augmentation

Since both Random Object Scaling (ROS) in ST3D [6] and
our Complementary Augmentation (CA) adopt the same co-
ordinate conversion method in [5], it is important to note
the differences between CA and ROS. Firstly, in CA, we re-
place the box b with a high-quality pseudo box bh instead of
solely scaling the box itself. Secondly, the scale sizes used
in CA are determined by the ratios ( lb

lh
, wb

wh
, hb

hh
) rather than

random values. In this way, we can retain valuable localiza-
tion and categorization information from the original box b
within b̂h. Thirdly, CA is specifically applied in the target
domain to enhance the reliability of pseudo labels, whereas
ROS is implemented in the source domain to address the
domain shift resulting from object size bias.

A.4. Limitations and Future Work

While our proposed method, PERE, demonstrates promis-
ing results in cross-dataset 3D object detection, its gener-
alizability to unseen datasets or domains may be limited.
The performance can degrade when faced with novel ob-
ject categories not present in the training data. Addressing
this limitation requires exploring techniques to ensure ro-
bust performance. In future work, we plan to enhance the
current datasets by incorporating synthetic data, which can
be can be easily annotated. This augmentation aims to make
the datasets more suitable for accommodating novel cate-
gories and to enhance the overall training process.

B. Additional Ablation Studies
To gain a deeper understanding of the influence of individ-
ual modules within PERE, we conducted additional abla-
tion studies. These experiments are based on PVRCNN [3],
conducted on the N → K task, and evaluated for the Car
category, unless otherwise stated.

B.1. Sensitivity Analysis of Key Hyper-parameters

In this section, we perform a sensitivity analysis on sev-
eral key hyper-parameters, including the deviation level λ,
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Figure S1. Ablation studies for the deviation level λ, the margin
α in the triplet loss, the trade-off parameter η and the update fre-
quency k. The red dotted lines represent the optimal parameters
adopted in our experiments.

Lintra Linter APBEV / Closed Gap AP3D / Closed Gap

79.56 / 57.57% 61.35 / 49.76%
✓ 79.83 / 58.98% 63.70 / 55.97%

✓ 81.51 / 67.74% 64.46 / 57.98%
✓ ✓ 82.09 / 70.77% 68.34 / 68.23%

Table S1. Ablation studies of cross-domain triplet loss

the margin α in the triplet loss, the trade-off parameter η
and the update frequency k. Fig. S1 illustrates that our pro-
posed PERE exhibits low sensitivity to these parameters.
It consistently achieves remarkable generalization perfor-
mance across a wide range of parameter values. This find-
ing demonstrates the robustness of our PERE under diverse
hyper-parameter settings.

B.2. Analysis of Cross-domain Triplet Loss

In this part, we assess the individual importance within
Ltriplet (Sec. 3.5). As shown in Table S1, the absence of
Lintra and Linter results in the poorest performance. Fur-
thermore, Linter contributes more significantly to perfor-
mance improvements compared to Lintra, resulting in re-
spective increases of 5.07% and 3.83% in AP3D. The inclu-
sion of both Lintra and Linter yields the best performance,
confirming the effectiveness of leveraging the intra-domain
and the inter-domain triplet losses to align RoI features.

B.3. Analysis of BoxReplace

In this section, we design two variants of BoxReplace (Sec.
3.3). As shown in Table S2, w/o scaling and random-
category result in a performance decrease of 2.4% and 3.5%
(0.4%and 0.9%) in terms of AP3D (APBEV). These results

Method APBEV / Closed Gap AP3D / Closed Gap

w/o scaling 81.80 / 69.26% 66.72 / 63.95%
random-category 81.38 / 67.07% 65.95 / 61.92%
BoxReplace (ours) 82.09 / 70.77% 68.34 / 68.23%

Table S2. Effectiveness analysis of each module in BoxReplace.
Unlike our approach, which replaces the unreliable box b with a
scaled high-confidence box bh under the same category, w/o scal-
ing indicates that box bh is not scaled, and random-category means
randomly selecting bh without maintaining category consistency.

Method APBEV / Closed Gap AP3D / Closed Gap

V-ĵ 79.54 / 57.46% 61.42 / 49.95%
V-average 81.57 / 68.06% 63.66 / 55.87%
V-i (ours) 82.09 / 70.77% 68.34 / 68.23%

Table S3. Effectiveness analysis of proposal generation strategy.
V-i, V-ĵ and V-average denotes that proposals I and E inherit the
values of (l, w, h, θ) from proposal i, proposal ĵ, and the average
values of proposals i and ĵ, respectively.

indicate that both the scaling operation and maintaining cat-
egory consistency in our BoxReplace approach contribute
to performance enhancements.

B.4. Analysis of Proposal Generation Strategy

In this section, we formulate two variants to generate ad-
ditional proposals (Sec. 3.4). As shown in Table S3, the
performance of proposals I and E inheriting the values of
(l, w, h, θ) from proposal i exhibits the highest precision.
Additionally, the V-average variant achieves the second-
best performance. These results emphasize that inheriting
proposal i ∈ Ph yields superior precision compared to pro-
posals j ∈ Pr and their corresponding average values.

C. Qualitative Results

C.1. Detection Performance

To provide a more intuitive illustration of detection per-
formance, we randomly selected four point cloud samples
from the validation set of KITTI [2]. The qualitative re-
sults are presented in Fig. S2. Compared to the source
only model, our PERE significantly enhances the gener-
alization ability through pseudo label refinement. Specif-
ically, the results demonstrate that the source only model
generates a higher number of redundant false positive boxes
while overlooking more true positive boxes. In contrast,
PERE achieves a more reasonable performance by produc-
ing fewer false boxes. However, despite the improvements,
as shown in the lower part of Fig. S2, PERE still exhibits
some failure cases due to the inevitable domain gaps.



C.2. Direct Removal vs. Complementary Augmen-
tation

As mentioned in our paper, another naive solution is to di-
rectly remove all unreliable boxes and their internal points
(Direct Removal). To facilitate a more intuitive comparison
between Direct Removal and our complementary augmen-
tation, we randomly selected four point cloud samples from
the KITTI validation set [2]. Fig. S3 illustrates that Direct
Removal overlooks more true positive boxes. This occurs
because, during testing, points within unreliable boxes are
misclassified as background points, leading to the model
becoming trapped in local minima. In contrast, our com-
plementary augmentation, which incorporates BoxReplace,
utilizes points within high-confidence boxes as foreground
points at unreliable locations. This operation effectively
prevents the model from getting stuck in local minima.

C.3. Interpolation and Extrapolation

In this section, to present the interpolation and extrapola-
tion operations in 3D space more intuitively, we randomly
selected four instances along with their corresponding pro-
posals. As shown in Fig. S4, the interpolation and extrap-
olation operations exhibit the ability to generate more pre-
cise proposals compared to the basic proposals. These op-
erations go beyond solely focusing on regions with similar
point numbers as instances in Ds, resulting in an effective
enhancement of proposal precision.
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Figure S2. Qualitative results of detection performance on the KITTI val set. The ground-truth boxes are highlighted in green, the detection
results obtained from our PERE are highlighted in red, and the detection results derived from the source only model are highlighted in
orange. All qualitative results are generated based on PVRCNN [3] and conducted on the N → K task.
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Figure S3. Qualitative results of the comparison between Direct Removal and our complementary augmentation. The ground-truth boxes
are highlighted in green, the detection results obtained from our PERE are highlighted in red, and the detection results derived from the
Direct Removal model are highlighted in purple. All qualitative results are evaluated on the KITTI val set, based on PVRCNN [3] and
conducted on the N → K task.

Ground Truth Extrapolated ProposalInterpolated ProposalBasic Proposals

(a) (b) (c) (d)

Figure S4. Qualitative results of proposals. For the sake of brevity, we omit other basic low-confidence proposals to present the interpolation
and extrapolation operations in 3D space. (a) and (b) demonstrate that the interpolated proposals exhibit the closest alignment with their
corresponding instances, while (c) and (d) depict that the extrapolated proposals align closest with their corresponding instances. All
qualitative results are generated based on PVRCNN [3] and conducted on the N → K task.
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