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Supplementary Material

A. Overview
We organize this supplementary material into the follow-

ing sections: Appendix B provides additional implementa-
tion details for RealNet. Appendix C provides detailed re-
sults on the BTAD [12] and VisA [28] datasets, supplemen-
tary ablation study results, an analysis of RealNet’s compu-
tational efficiency, anomaly detection results in multi-class
setting, as well as synthetic anomaly image quality assess-
ment results. Appendix D offers additional visualization re-
sults, including qualitative results of RealNet in anomaly
localization, images generated by SDAS, and a straightfor-
ward visualization result of AFS. Appendix E discusses the
limitations of our method.

B. More details
In SDAS, we use the learnable reverse diffusion variance

[13] as Σθ(xt, t), given by:

Σθ(xt, t) = exp(v log βt + (1− v) log β̃t) (S1)

Here, βt represents the variance of the diffusion process,
while β̃t represents the variance of the conditional posterior
distribution q(xt−1|xt, x0), and β̃t =

1−ᾱt−1

1−ᾱt
βt. The vector

v is predicted by the model and weighted with βt and β̃t in
the log space. We optimize µθ(xt, t) and Σθ(xt, t) with the
loss Lhybrid:

Lhybrid = Lsimple + γLvlb (S2)

where

Lvlb = L0 + L1 + ...+ LT−1 + LT

L0 = − log pθ(x0|x1)

Lt−1 = DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

LT = DKL(q(xT |x0)||p(xT )) (S3)

We set γ to 0.001 in Eq. (S2), and stop the gradient of
µθ(xt, t) in Lvlb during the training phase. To accelerate
the convergence of the diffusion model, we initialize it with
weights pre-trained on ImageNet [5]. We set the reverse
diffusion step T of 20, and generating 10,000 images at a
resolution of 256×256 takes 6 hours using a single NVIDIA
GeForce RTX 3090.

The SDAS with DDIM [17] is described in Algo-
rithm S1, which provides three options for applying pertur-
bation variance in the deterministic reverse diffusion pro-
cess: Σ = βt, Σ = β̃t, and Σ = Σθ(xt, t). Experimental
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Figure S1. Sample anomaly images generated by SDAS with dif-
ferent anomaly strengths s.

observations show that the anomaly images obtained by ID-
DPM [13] are slightly better than those obtained by DDIM
[17], and therefore, we use IDDPM [13] for SDAS. Some
examples can be found in Appendix D.

Fig. S1 presents examples of images generated by SDAS
with a broader range of anomaly strengths. As the anomaly
strength increases, the generated anomalous images contain
more noise, reducing their authenticity. In the experiments,
we set the anomaly strength between 0.1 and 0.2, allowing
SDAS to encompass a wider range of real-world anomalies.

In RRS, the global reconstruction residual E(An) origi-
nates from distinct reconstruction networks, leading to dis-
parate distributions across its dimensions. We apply a
BatchNorm [9] layer (without Affine) to E(An) and then
perform reconstruction residuals selection to ensure a con-
sistent distribution across the dimensions of E(An).

The discriminator is implemented using a basic MLP
with upsampling layers to map anomaly scores from feature
resolution to image resolution. During the training phase
of RealNet, we do not use any data augmentation for the
synthesis of anomalous images, and maintain an equal ratio
between normal images and synthetic anomalous images.
In the process of image blending, we uniformly sample the
opacity δ from 0.5 to 1.0 in Eq. (3). The training of RealNet
is performed on a single NVIDIA GeForce RTX 3090, with
an approximate average training time of 2 hours.

C. More results

C.1. Experimental results on BTAD

We evaluate the anomaly detection and localization per-
formance of RealNet and alternative methods on the BTAD
dataset [12], with the results shown in Tab. S1. Although
SIA does not show a significant performance improvement
compared to DTD [2] due to the absence of complex struc-
tural anomalies in the three industrial products of the BTAD
dataset [12], RealNet demonstrates state-of-the-art perfor-
mance in anomaly detection and localization when com-
pared to other methods, without any structural or hyperpa-
rameter tuning.



Algorithm S1 SDAS with DDIM [17]

Input: diffusion model ϵθ(xt, t), perturbation variance Σ, anomaly strength s
xT ∼ N (0, I)
for all t from T to 1 do

xt−1 ∼ N (
√
ᾱt−1(

xt−
√
1−ᾱtϵθ(xt,t)√

ᾱt
) +

√
1− ᾱt−1ϵθ(xt, t), sΣ)

end for
return x0

Table S1. Comparison of RealNet with alternative anomaly detection methods on the BTAD dataset [12], employing Image AUROC (%)
and Pixel AUROC (%) as evaluation metrics.

Category VT-ADL [12] P-SVDD [21] FastFlow [23] SPADE [3] RD++ [20] RealNet (SIA) RealNet (DTD [2])
01 (-, 99) (95.7, 91.6) (-, 95) (91.4, 97.3) (96.8, 96.2) (100.0, 98.2) (100.0, 98.1)
02 (-, 94) (72.1, 93.6) (-, 96) (71.4, 94.4) (90.1, 96.4) (88.6, 96.3) (87.5, 96.3)
03 (-, 77) (82.1, 91.0) (-, 99) (99.9, 99.1) (100.0, 99.7) (99.6, 99.4) (99.4, 99.6)

AVG (-, 90.0) (83.3, 92.1) (-, 96.7) (87.6, 96.9) (95.6,97.4) (96.1, 97.9) (95.7, 98.0)

Table S2. Comparison of RealNet with alternative anomaly detection methods on the VisA dataset [28], employing Image AUROC (%)
and Pixel AUROC (%) as evaluation metrics.

Category SPADE [3] FastFlow [23] DRAEM [25] PatchCore [14] RealNet (SIA) RealNet (DTD [2])
Candle (91.0, 97.9) (92.8, 94.9) (91.8, 96.6) (98.6, 99.5) (96.1, 99.1) (95.0, 99.0)

Capsules (61.4, 60.7) (71.2, 75.3) (74.7, 98.5) (81.6, 99.5) (93.2, 98.7) (88.1, 97.6)
Cashew (97.8, 86.4) (91.0, 91.4) (95.1, 83.5) (97.3, 98.9) (97.8, 98.3) (95.9, 97.6)

Chewing gum (85.8, 98.6) (91.4, 98.6) (94.8, 96.8) (99.1, 99.1) (99.9, 99.8) (100.0, 99.8)
Fryum (88.6, 96.7) (88.6, 97.3) (97.4, 87.2) (96.2, 93.8) (97.1, 96.2) (95.3, 95.2)

Macaroni1 (95.2, 96.2) (98.3, 97.3) (97.2, 99.9) (97.5, 99.8) (99.8, 99.9) (98.2, 99.7)
Macaroni2 (87.9, 87.5) (86.3, 89.2) (85.0, 99.2) (78.1, 99.1) (95.2, 99.6) (91.8, 99.3)

PCB1 (72.1, 66.9) (77.4, 75.2) (47.6, 88.7) (98.5, 99.9) (98.5, 99.7) (97.1, 99.4)
PCB2 (50.7, 71.1) (61.9, 67.3) (89.8, 91.3) (97.3, 99.0) (97.6, 98.0) (97.5, 97.8)
PCB3 (90.5, 95.1) (74.3, 94.8) (92.0, 98.0) (97.9, 99.2) (99.1, 98.8) (97.6, 98.4)
PCB4 (83.1, 89.0) (80.9, 89.9) (98.6, 96.8) (99.6, 98.6) (99.7, 98.6) (99.2, 98.6)

Pipe fryum (81.1, 81.8) (72.0, 87.3) (100.0, 85.8) (99.8, 99.1) (99.9, 99.2) (99.9, 98.6)
AVG (82.1, 85.6) (82.2, 88.2) (88.7, 93.5) (95.1, 98.8) (97.8, 98.8) (96.3, 98.4)

C.2. Experimental results on VisA

We present the performance of RealNet and alternative
methods on the VisA dataset under the one-class protocol
[28] in Tab. S2. RealNet achieves the best performance in
both anomaly detection and localization. Compared to DTD
[2], the RealNet trained using SIA shows an improvement
of 1.5% in Image AUROC and 0.4% in Pixel AUROC.

C.3. Supplementary ablation studies

To further investigate RealNet’s anomaly detection per-
formance on the MVTec-AD dataset [1], we examine var-
ious backbones and reconstruction feature dimension set-
tings. As shown in Tab. S3, when WideResNet50 [24] is
employed as the backbone and the reconstruction feature di-
mensions {m1, ...,mK} are reduced from {256, 512, 512,
256} to {128, 256, 256, 128}, there is a slight decrease of
0.16% in Image AUROC. Despite this reduction, RealNet
maintains its competitive performance compared to other

methods. Additionally, the adoption of EfficientNetB4 [18]
and ResNet34 [7] as backbones also results in competitive
performance, demonstrating the effectiveness of RealNet
across various settings.

C.4. Computational efficiency analysis

We investigate the computational efficiency and detec-
tion performance of three different multi-scale feature re-
construction architectures on the MVTec-AD dataset [1], as
illustrated in Fig. S2. To provide a comprehensive analy-
sis, Tab. S4 presents the inference speed, model size (in-
cluding backbone), and anomaly detection performance of
these architectures. The inference is performed using a sin-
gle Nvidia GeForce RTX 3090, with all other settings ad-
hering to the specifications detailed in Sec. 4.1.

We utilize a consistent reconstruction network based on
the U-Net model with skip connections across three distinct
architectures. The employed U-Net model initiates with a



Table S3. Performance evaluation of RealNet with varying backbones and reconstruction feature dimension settings on the MVTec-AD
dataset [1], employing Image AUROC (%), Pixel AUROC (%), and PRO (%) as evaluation metrics.

Backbone EfficientNetB4 [18] ResNet34 [7] WideResNet50 [24]
{m1,...,mK} {24, 32, 56, 160} {64, 128, 256, 128} {128, 256, 256, 128} {256, 512, 512, 256}

Bottle (100.0, 98.83, 95.96) (100.0, 98.56, 95.91) (100.0, 99.41, 94.37) (100.0, 99.30, 95.62)
Cable (96.36, 96.33, 88.61) (96.31, 96.32, 88.68) (98.35, 98.01, 92.99) (99.19, 98.10, 93.38)

Capsule (97.97, 99.16, 91.46) (96.81, 98.78, 87.87) (99.44, 99.39, 79.76) (99.56, 99.32, 84.48)
Carpet (100.0, 98.27, 96.35) (99.76, 98.37, 94.45) (99.80, 98.91, 96.32) (99.84, 99.19, 96.41)
Grid (99.92, 99.31, 97.35) (100.0, 99.26, 97.39) (100.0, 99.55, 96.38) (100.0, 99.51, 97.28)

Hazelnut (99.89, 98.45, 94.98) (99.93, 99.35, 94.36) (100.0, 99.67, 93.06) (100.0, 99.68, 93.14)
Leather (100.0, 99.34, 97.75) (99.97, 99.40, 98.28) (100.0, 99.81, 96.99) (100.0, 99.76, 96.22)

Metal Nut (99.07, 96.90, 92.65) (99.17, 96.68, 93.34) (99.90, 98.75, 95.10) (99.76, 98.58, 94.39)
Pill (96.10, 94.86, 86.60) (97.55, 98.23, 93.17) (97.85, 99.19, 80.73) (99.13, 99.02, 91.04)

Screw (92.95, 99.05, 92.68) (96.99, 99.09, 89.57) (97.99, 99.28, 88.60) (98.83, 99.45, 87.90)
Tile (99.49, 95.69, 92.10) (99.93, 97.40, 91.65) (100.0, 99.27, 97.20) (99.96, 99.44, 97.70)

Toothbrush (99.44, 98.90, 92.39) (100.0, 98.26, 91.74) (100.0, 99.26, 91.22) (99.44, 98.71, 91.57)
Transistor (99.58, 98.57, 93.63) (99.33, 97.70, 88.53) (99.79, 98.26, 83.34) (100.0, 98.00, 92.92)

Wood (98.77, 94.47,92.67) (98.16, 96.35, 91.46) (99.56, 98.22, 90.76) (99.21, 98.22, 90.54)
Zipper (99.71, 98.01, 91.68) (99.90, 98.55, 93.91) (99.74, 99.20, 90.73) (99.82, 99.17, 93.43)
AVG (98.62, 97.74, 93.12) (98.92, 98.15, 92.69) (99.49, 99.07, 91.17) (99.65, 99.03, 93.07)

(A) (B) (C)

Figure S2. Various architectures of multi-scale feature reconstruction for anomaly detection. (A) Independent Reconstruction Architecture
uses separate networks for multi-scale feature reconstruction. (B) Fully Aligned Feature Reconstruction Architecture aligns all features for
reconstruction. (C) Neighboring Aligned Feature Reconstruction Architecture aligns and reconstructs neighboring resolution features.

stack of residual layers and down-sampling layers, gradu-
ally decreasing the spatial dimensions while increasing the
number of channels. Subsequently, the model utilizes a
stack of residual layers and up-sampling layers to inversely
reconstruct features. Throughout this process, skip connec-
tions are incorporated at equivalent spatial resolutions to en-
sure a smooth and logical flow.

Specifically, architecture A adopts separate reconstruc-
tion networks to reconstruct multi-scale features without the
need for feature interpolation or alignment. This method
ensures outstanding anomaly detection performance while
maintaining high computational efficiency. With a resolu-
tion of 256× 256 and reconstruction feature dimensions of
{256, 512, 512, 256}, architecture A with model size of
2.2 GB achieves a rapid inference speed of 31.93 FPS. And
it can perform inference using only 4GB of GPU memory.

Concurrently, it attains an Image AUROC of 99.65% and a
Pixel AUROC of 99.03%. By decreasing the reconstruction
feature dimensions to {128, 256, 256, 128}, architecture A
reduces the model size to 0.74 GB and achieves a higher
inference speed of 40.42 FPS, while preserving an Image
AUROC of 99.49% and a Pixel AUROC of 99.07%. Fur-
thermore, at a high resolution of 512 × 512, it delivers an
inference speed of 13.53 FPS, along with an Image AUROC
of 99.40% and a Pixel AUROC of 98.71%. These inference
speeds indicate that architecture A satisfies the real-time re-
quirements for industrial inspection applications.

Regarding architecture B, as referenced in [16, 19, 22],
it is used to align the multi-scale features of a small pre-
trained network. As aligning down-sampled features will
reduce the resolution of model detection and cause pre-
dictable performance loss, the experiment only discusses



Table S4. Performance evaluation of various reconstruction archi-
tectures on the MVTec-AD dataset [1]. The metrics include Image
AUROC (%), Pixel AUROC (%), and PRO (%).

Speed (FPS) ↑ Model Size (GB) ↓ Metrics ↑

{m1,...,mK} is {128, 256, 256, 128} and image size is 256× 256

A 40.42 0.74 (99.49, 99.07, 91.17)

{m1,...,mK} is {256, 512, 512, 256} and image size is 256× 256

A 31.93 2.20 (99.65, 99.03, 93.07)
B 10.83 7.22 (98.44, 98.17, 94.27)
C 22.39 3.75 (99.62, 98.90, 94.71)

{m1,...,mK} is {256, 512, 512, 256} and image size is 512× 512

A 13.53 2.20 (99.40, 98.71, 94.01)

up-sampling alignment. Compared to architecture A, ar-
chitecture B reconstructs the interpolated features, signif-
icantly reducing computational efficiency and increasing
model size. Moreover, due to the limited number of normal
images, the overly large reconstruction network in architec-
ture B is prone to overfitting, resulting in reduced detection
performance. Consequently, for large-scale pre-trained net-
works with high-dimensional features, aligning and recon-
structing all features is suboptimal.

Moreover, we observe that utilizing multiple reconstruc-
tion networks for feature reconstruction in architecture A
causes minor deviations in localizing small-area anomalies,
resulting in a reduced PRO. To address this, we propose ar-
chitecture C, which aligns and reconstructs features from
two neighboring resolution, thereby reducing the number
of reconstruction networks, controlling the model size, and
striking a balance between computational efficiency and lo-
calization accuracy. At a 256 × 256 resolution, with re-
construction feature dimensions of {256, 512, 512, 256},
architecture C has a 3.75 GB model size and achieves an
inference speed of 22.39 FPS, while attaining an Image AU-
ROC of 99.62%, a Pixel AUROC of 98.90%, and a PRO of
94.71%.

In summary, the design of RealNet balances both
anomaly detection performance and computational effi-
ciency. The introduction of AFS allows us to flexibly cus-
tomize models of various sizes to accommodate different
usage scenarios. Furthermore, among our three key innova-
tions, both AFS and RRS introduce no additional learnable
parameters, ensuring strong interpretability. As for SDAS,
it only introduces perturbation during the reverse diffusion
process, without requiring any prior knowledge about the
distribution of real anomaly images.

C.5. Anomaly detection in multi-class setting

In the multi-class setting [22, 27], anomaly detection is
performed across multiple target classes concurrently, with-
out access to sample class labels during both training and
inference phases. Learning the data distributions of multi-
ple classes jointly makes the reconstruction more complex.

Table S5. Comparison of RealNet with alternative methods in
multi-class anomaly detection on the MVTec-AD dataset [1].

Methods Image AUROC Pixel AUROC
DRAEM [25] 88.1 87.2

PaDiM [4] 84.2 89.5
UniAD [22] 96.5 96.8

OmniAL [27] 97.2 98.3
RealNet 97.3 98.4

Table S6. Image quality comparison of SIA with alternative
anomaly synthesis approaches on the MVTec-AD dataset [1].

Methods FID [8] ↓ LPIPS [26] ↑
DTD [2] 120.52±0.63 0.16±0.00

CutPaste [11] 77.34±0.09 0.11±0.00
NSA [15] 68.76±0.16 0.09±0.01

SIA 60.39±1.26 0.18±0.01

In such settings, previous reconstruction methods tend to
output copies of the input images instead of performing se-
lective reconstruction, which leads to a significant decrease
in performance. We evaluate the performance of RealNet
in multi-class anomaly detection on the MVTec-AD dataset
[1] and compare it with alternative state-of-the-art methods.
We use DTD [2] for anomaly synthesis as class labels are
unavailable during training. The remaining settings are con-
sistent with Sec. 4.1.

The results are shown in Tab. S5. When detecting
anomalies across 15 categories of the MVTec-AD dataset
[1] concurrently, RealNet achieves an Image AUROC of
97.3% and a Pixel AUROC of 98.4% using a ResNet50
[7] pre-trained on ImageNet [5], surpassing state-of-the-art
multi-class anomaly detection methods [22, 27]. To ensure
that normal regions can be reconstructed correctly, we do
not explicitly constrain the generalization ability of the re-
constructed network in RealNet. Instead, we implicitly con-
strain the reconstruction network to ensure that anomalous
regions can be correctly detected by discarding a part of the
reconstruction residuals.

C.6. Synthetic anomaly image quality assessment

In this section, we evaluate the quality of anomaly im-
ages generated by various anomaly synthesis methods on
the MVTec-AD dataset [1]. Specifically, we use the follow-
ing evaluation metrics:
• FID (Fréchet Inception Distance) [8]: FID measures the

distance between the distribution of synthetic anomaly
images and real anomaly images, evaluating both the re-
alism and diversity of the synthetic anomaly images. A
lower value indicates better performance.



• LPIPS (Learned Perceptual Image Patch Similarity) [26]:
We employ cluster-based LPIPS [6] to evaluate the diver-
sity of synthetic anomaly images. Supposing a category
contains N real anomaly images, we partition the synthe-
sized anomaly images into N groups by finding the low-
est LPIPS, then we compute the mean pairwise LPIPS
within each group and compute the average of all groups.
A higher cluster LPIPS indicates greater diversity.
We employ various anomaly synthesis methods to gener-

ate 1,000 anomaly images for evaluation, with each method
independently assessed three times. The experimental re-
sults are shown in Tab. S6. In comparison to other anomaly
synthesis methods, SIA achieves the best FID and LPIPS
metrics, highlighting the outstanding performance of SDAS
in generating both realistic and diverse anomaly images,
and demonstrating the effectiveness of SDAS in improving
anomaly detection performance.

D. Visualization

We conduct a comprehensive visual analysis of RealNet
on the four datasets. Fig. S3 shows the qualitative results of
RealNet in anomaly localization, showcasing its outstand-
ing performance in pixel-level anomaly localization. Figs.
S4 and S5 display the anomaly images and normal images
generated by SDAS, respectively. Fig. S6 illustrates images
synthesized using SIA with localized anomalous regions.
Fig. S7 provides an intuitive explanation of pre-training
bias, indicating that not all feature maps contribute equally
to anomaly detection and localization, which validates the
efficacy of AFS.

E. Limitations

In some categories with more texture anomalies, such
as the texture categories in MVTec-AD dataset [1], SIA’s
performance may slightly underperform when compared to
DTD [2]. Given that DTD dataset [2] includes a diverse
range of real-world texture images, it effectively simulates
common anomaly types in the textural category, such as
color, oil, and glue. Nonetheless, SIA excels in the majority
of scenarios, outperforming DTD [2] and offering superior
capability in synthesizing anomalies in images with intri-
cate structures.

Compared to anomaly synthesis methods based on data
augmentation [11, 15] or external data [25], SDAS increases
additional offline training time. For instance, we generate
10,000 anomaly images at a resolution of 256×256 for each
category, and it will take 6 hours using a single NVIDIA
GeForce RTX 3090. However, it is pivotal to clarify that
RealNet omits SDAS without any additional computational
cost during inference and real-world applications. There-
fore, we believe that the slight increase in training time to
enhance performance is necessary and worthwhile.

In order to achieve higher computational efficiency, we
do not upsample multi-scale features. Instead, we employ
multiple reconstruction networks for feature reconstruction,
which reduce the resolution of anomaly detection. The
lower feature reconstruction resolution may introduce mi-
nor deviations in localizing small anomalous areas, leading
to a decrease in PRO. However, we found that increasing
the resolution of anomaly detection by reducing the num-
ber of reconstruction networks can improve PRO. For in-
stance, architecture C in Fig. S2 achieved a higher PRO
score of 94.71%. Furthermore, increasing the resolution of
images can also lead to an improvement in PRO, as detailed
in Tab. S4.
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Figure S3. Qualitative results of RealNet. Within each group, from left to right, are the anomaly image, ground-truth, and predicted
anomaly score. The examples are from the MVTec-AD [1], MPDD [10], BTAD [12], and VisA [28] datasets.



Figure S4. Anomaly images generated by SDAS. The examples are from the MVTec-AD [1], MPDD [10], BTAD [12], and VisA [28]
datasets. Within each group, from top to bottom, the anomaly strength gradually increases.



Figure S5. Normal images generated by SDAS (when s = 0). The examples are from the MVTec-AD [1], MPDD [10], BTAD [12], and
VisA [28] datasets.



Figure S6. Local anomaly images synthesized by SIA. The examples are from the MVTec-AD [1], MPDD [10], BTAD [12], and VisA
[28] datasets. Within each group, from top to bottom, the anomaly strength gradually increases.
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Figure S7. Visualization of AFS. For an original image and a synthetic anomaly image, we visualize the normalized difference between their
corresponding feature maps across different layers of a pre-trained WideResNet50 [24]. From top to bottom, the feature map respectively
come from the first layer to the fourth layer. Each feature map is labelled with its index in the layer and the corresponding AFS loss.
From left to right, the localization performance of the feature maps gradually decreases. Our visualization intuitively demonstrates the
localization bias caused by pre-training, indicating that not all feature maps contribute equally to anomaly detection and localization, as
well as emphasizing the effectiveness of AFS.
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